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ABSTRACT

This report is a review of currently available techniques for studying the properties of objects

of interest in radar astronomy, which are usually pread radar targets. The report is intended

as a sequel to Lincoln Laboratory Technical Report 234, in which R. Price has presented a

rather complete treatment of the theory and methodology of the detection of such spread tar-

gets.1 Here we are interested in measurement (or estimation) rather than detection.

Spread targets are defined to be those that produce an observable smearing of the echo in

range, or an observable rate of echo fluctuation, or both. (Spread targets may or may not be

at the some time extended targets, i.e., ones that fill the antenna boamwidth.)

The approach taken here in presenting the available material on spread target measurements

is to follow what happens to the various attributes (amplitude, delay, phase, frequency shift,

polarization) of an incident signal upon reflection from such a target. Then the question is

turned around by detailing the ways in which the study of rhese signal attributes by appro-

priate receiver processing can be used to infer target properties. In the case of such radar

astronomy targets as rotating planets, thes target properties might include range, velocity,

shape, size, rotation vector, and surface characteristics. (The last of these may be studied

either as average behavior over the target surface or as a function of location on the target
surface.) The possible transmitted signalb include simple (unity time-bandwidth product) sig-

nals, or complicated (large-TW)signals, including frequency-spaced setsof sinusoids. The re-

ceiver operations considered include processing of the echo signal received atspaced receivers

(interferometry), and processing of separate compnn.'.. received at the same point (polar-

imetry), as well as the much more completely understood case of processing of the output of a

single receiving antenna by various methods.

The concluding section is a summary of presently available information on the variance of the

error in making such measurements (including some very re..,ttresults obtained by M.J. Levin

and R. "rice).

Much cf this report consists of previous results that have not been placed in a connected story

before. One topic that is new hkre is the extension of Manasse's study of radar interferom-

etry to include the effec.c-f target rotation, and the resulting motion of the diffraction pattern

observed at the spaced radar receivers on earth.
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RADAR ASTRONOMY MEASUREMENT TECHNIQUES

I. INTRODUCTION

This report deals with the use of radar systems to measure quantities of astronomical

interest. Radar astronomy targets, which may be rotating solid bodies, moving ionized regions,

or clouds of particles, are examples of spread radar targets, i.e., objects that impose on the

probing radar signal either or both of the following two effects: (a) an observable range smear-

ing, and (b) an observable fluctuation rate. It is easy to imagine other examples of spread tar-

gets, for example aircraft, tumbling nose cones, missile wakes, and so forth, to which the ideas

presented here may be more or less relevant, but we shall ignore these possibilities here and

talk in terms of radar astronomy targets.

The theory and practice of optimizing the detectability of spread targets has been treated

rather completely by Price in Lincoln Laboratory Technical Report 234, to which this report is

a sequel. The procedures developed there are applicable interchangeably to the detection of

spread objects as radar targets or the use of them as communication channels. In this report

we ignore the radar detection as well as the communication aspects of the spread target problem

and deal solely with the use of the radar system for making measurements of the properties of

the target.

The outgoing and returning electromagnetic signals are characterized by certain quantities,

and we would like to investigate how the parameters of the outgoing signal are altered in the re-

flection process, and then how this alteration may be studied. If we regard the electrical signal

as a scalar quantity, i.e., a narrow-band time function appearing at the two terminals of the an-

tenna, then a description of the amplitude, frequency, and phase as a function of time completely

specifies the signal. If in addition we are willing to take into account the vector direction of the

electrical signals (that is, the instantaneous plane of polarization as a function of time), and the

way in which all the quantities just listed vary from point to point in space, still more sensitive

measurements on the target can be made. As we shall see, certain interesting things may be

learned from such interferometric measurements (correlation between the waves ooserved at

two different points) and polarimetric measurements (correlation between components observed

at the same point).

A complete understanding of all these factors embraces a very large area indeed, and only

parts of the subject are well understood. What we shall be doing in this report to systematize

these scattered notions can be stated this way: The radar signal that is transmitted can be

written

-;(t) = i(t) cos [ZwfIt + (P(t)] , (I)



which is seen to be characterized by (a) scalar amplitude E, (b) origin of the time scale t,

(c) phase 9, (d) average rate of change of phase, i.e., frequency 2,rf, and (e) instantaneous

direction of polarization x/x. (The arrow indicates a vector quantity.) Corresponding to the

transmitted signal 1(t) there is received at a given point an echo signal

;(t) = 0(t) cos [Zwfot + 0(t)]

likewise characterized by five quantities. It is the fact that these five parameters can be con-

trolled at will in the transmission (as well as measured in various ways on reception) that em-

bodies any advantage that radar astronomy might have reiative to radio astronomy.

It will be found most useful to employ the common representation of the real signal x(t), not

in the trigonometric form (Eq. (i)1, but rather as the real part of a complex signal 2(t)

;t(t) = Re (f(t)) = Re {X(t) exp [j27fot]} (2)

(in other words Re {f(t)} = E(t) cos (p(t). The quantity 9(t) is called the complex envelope.

Manipulation of X(t) is much less cumbersome than manipulation of x(t) since the usually irrele-

vant carrier frequency has been removed. Bý exercising reasonable care, the "real-part-of"

operation can be reinserted at the conclusion of the manipulation to give the correct answer. The

hypothetical imaginary part of i(t) is usually chosen to be the Hilbert transform of our real ob-

servable waveforin ";(t); then for 1(t) a narrow-band function (center frequency much greater

than bandwidth) Im { (t)) always represents the quadrature or out-of-phase component of the real

signal 1(t). Roman letters will be used to indicate the real-time function and script letters will

denote the corresponding complex envelope.

In what follows we shall divide radar targets into two classes, hard and soft targets, and in-

vestigate one by one the influence of the target properties on each of our attributes:

amplitude (or actually average power) (Sec. II-B and III-A),

delay (II-C and IIl-B),

phase and frequency (II-D and III-C), and

polarization direction (II-E and III-D).

After a general discussion of the instrumentation of radar measurements (Sec. IV), we will pro-

ceed in Sec. V to turn things around and ask how various target properties of astronomical in-

terest may be studied by studying the above attributes in the received signal wv(t). Section VI

discusses errors in such measurements.

It would be desirable to have a concise, and perfectly general notion of how optimally to

measure the interesting target properties in the presence of the inevitable noise, finite observa-

tion bandwidth, finite observing time, and other factors causing errors. Using the statistical

discipline known as hypothesis testing, the presence or absence of the radar astronomy target

has been put on a sound enough theoretical basis,! Unfortunately the theory of measurement (or,

in the language of the statistician, estimation of target parameters) has been placed on a similar

strong foundation only for certain very simple types of measurements. What we shall attempt

to do here in the case of most of the measurement procedures is to present them systematically

as a collection of IL hoc ideas about reasonable ways to measure things about radar astronomy

targets, and, whenever possible, to give an idea of the measurement accuracy.



II. HARD TARGETS

By hard targets we mean bodies that, although they may be moving or changing their orien-
tation, are nevertheless rigid and of fixed shape. The term soft targets will refer here to those
that can change shape with time. The most interesting hard radar astronomy targets are ob-
viously the moon, planets, and minor planets. These are all bodies whose size is much larger

than any reasonable radar wavelength, and which have rough surfaces, in the sense that they
possess surface irregularities having a scale size of the order of magnitude of a wavelength.

With the exception of some smaller minor planets, these hard targets may be safely assumed
to have approximately spherical shapes with rough surfaces, and in our treatment of hard targets
we will be most interested in the spherical case. Where the radar properties depend on a spher-

ical target shape the fact will be pointed out.

A. The Angular Power Spectrum ao of an Incremental Portion of the Target

When an incident plane wave strikes a rough surface, energy is reflected in various direc-
tions (see Fig. 1). In adding up the individual contributions2 one finds that across the wavefront
of the reflection there are variations in delay, phase, amplitude, and direction of the polariza-

tion vector. The distant observer receives a plane wave which likewise contains irregularities
as a function of position laterally on the advancing plane wavefront.

WAV WAVE

Fig. 1. The manner in which an irregular surface produces
irregularities in the reflected wavefront.

As we shall see, it is possible to work backwards from the statistics of these irregularities
at the distant observing point to get the statistics of the irregularities at some smooth quasi-
planar boundary near but not on the target surfaces (dotted line of Fig. 1), but the question of how
these wavefront irregularities relate to the surface irregularities themselves is a much more
complicated one. The factors that enter include whether there is an undulating or Jagged (dis-
continuous) surface, whether irregularities are smaller or greater than the wavelength in the
lateral direction and in the up-down direction, whether the surface material is uniform in di-

electric properties but of a rough shape or whether the body is smooth but of irregular dielectric
composition, and so forth. It is safe to say that a large number of physical surface types could
give rise to the same type of irregularitiea of delay, phase, amplitude, and direction across

both the dotted boundary and the received wavefront. The reader in referred to Ref. 3 for a dis-

cussion of this question of the relation of terrain properties to properties of the reflected wavefront.
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In this report we shall be content to start with the irregularities in the reflected field produced

at the dotted boundary of Fig. i by terrain irregularities, and not with these latter irregularities

themselves. In the rest of this report when we speak of the target surface we shall mean, strictly

speaking, the wavefront of the reflected signal as examined over a quasi-planar region near to

but not actually on the surface of the body.

The radar receiver at a great distance from the target is exposed to an electromagnetic

signal formed by the propagation outward of the wavefront with all its irregularities. As we shall

see in the next several sections, radar measurements on hard targets, whether performed by a

-single receiver or a set of spaced receivers (interferometer) often amount simply to the meas-

urement of a quantity o (p) called the radar angular power spectrum, which expresses the sta-

tistics of the wavefront irregularities in a particular way.

In the next several pages, we shall take the familiar Fourier transform relationship between

field intensity across an aperture (at the target) and the remotely received signal, and derive an

expression for ar0 (() that shows just what statistical properties of the wavefront irregularities it

measures. While we are at it, we shall define several other terms and draw several conclusions

that will be useful later on.

Y

POINT (a, y, o)
PLANE APERTURE zO
HAVING ELECTRIC
FIELDj

DIRECTION OF
INCIDENT WAVE

POINT
2 ~(Ro. ye.

GROUND PLANj
(Welctrie field -O )

Fig. 2. Coordinate system for derivation of qo(9), where i = the angle
that an incident ray makes with the normal to a plane target region
(aperture), #' = similar angle for ray to receiver, e: equatorial angle
measured in the aperture plane between the projections of the two rays.

Figure 2 shows at z = 0 a plane region of the target surface (in the sense just mentioned)

with the irregular pattern of the electric field intensity of the echo being F (x, y, o). Denote the

component of I that lines up with the receiving antenna on the ground as C. The script letter

indicates a complex envelope as before, and the distances x, y, and z are expressed in multiples

of wavelengths. For the moment let us assume that F" is non-time-varying. The well-known

relationship giving the electric field VW at the distant receiver point (x0 , Yo, Zo) on the ground

plane as the Fourier transform of if is 4

1 ) m 5 E(x, y, o) exp [-j27r(tx + my)] dx dy

Aperture
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or, more compactly,
VY', m) C (x, y) ,(3)

where 1, m, and n are the direction cosines

= (xo- x)[z2 +(x - x)z + (Yo)2]-1/2

M = (Y o- y) [Zo2 + (Xo- X) 2 + (Yo- y) 2]-1/2

2 2 2 1/2

a = sin(' = zo0 (z + (xO- x) 2 + (Y-y)2]/2

The equation represents the sum of contributions falling on an incremental portion of the ground

plane having direction cosines in the range I to I + di and m to m + din. The Fourier inversion

of Eq. (3) is, of course,

e(x, y, o) = 5514/(l, m) exp [j2w(Ix + my)] di dm

ort

e (x, y) =4"WKI, m) (4)

Imagine now that at the target the aperture field distribution C is actually a reflection

caused by a plane wave incident along the ray path from the direction shown in the figure, and
that this wave arrives on the target at a power level of one watt per square meter of the incident

wavefront. Wis then seen to be the radar echo arriving at the receiving location. We want to
determine the number of watts per steradian of time-averaged echo power per square meter of

target when the power level of the incident signal is one watt per square meter of wavefront.

This can be obtained by taking one-half the squared magnitude of the complex envelope V, suit-

ably corrected for the number of steradians subtended by each incremental area di x din. This

ratio is

I- -" ["W t m) 12 (1- .1' - Z)1/2

0

If the field 6" on the aperture is randomly time-varying, then *4" will likewise vary ran-

domly with time and so will the power ratios just defined. We define the quantity qo to be 4w

times this average ratio:

a _ 4- ,(L•W'Im)l 2> (I 2 _-mZ)1/2 (5)

where < > denotes the infinite time average and Zo is the characteristic impedance of free space;

a is called the radar angular power spectrum of the target surface, and its dimensions are

square meters of radar cross section per square meter of target surface. The factor of 4r en-

ters simply by an arbitrary convention whereby all radar cross sections are defined as a ratio

of powers such as Eq. (5) multiplied by 47r. As it stands, ao is a function of (p, q1, e, I, and m.

t Note that Eqs. (3) and (4) constitute a Fourier transform pair all right, but in termn of direction cosines I and
m, and not in either angles such as V' or in distance on the ground plane (x0 and yo). Only near perpendicularity
(X° W x or y 0 y) does one have ground distances as an argument.

5



If one rules out an anisotropic target material, then the dependence is only on (p, (pt and e. If,
further, a monostatic rather than bistatic radar situation is assumed (that is, the transmitter

and receiver are collocated) then only one variable, (p = qpt, is left. In most of this report this

assumption will be made and we shall be dealing with the radar angular spectrum ao(op).

# TYPICAL SMALL"-- PLANE REGION .
% OF TARGET ......

(a) A hypothetical radar angular (b) Corresponding radar bright- (C) Interrelation of (a) and (b).
spectrum. ness distribution P(x,y).

TM

2a0/c

(d) Power vs range. (e) Power vs frequency.

Fig. 3. The manner In which the radar angular spectrum qa(oo) influences the radar echo returned
from a uniform spherical hard to. it.

An example of a radar angular spectrum is sketched in Fig. 3(a). Perhaps more familiar

examples are the Lambert Law (ao cos 2 (p) and Lommel-Seeliger or Euler Law (ao - cos 9,).

That ao (p) expresses certain statistics of the echo wavefront irregularities is now clear

from the following reasoning. From Eq. (5), we see that ao(() is proportional to the time-

averaged squared magnitude of the received electric field, but this electric field in turn is the

Fourier transform of the aperture distribution [Eq. (3)]. Thus, since the squared magnitude of

the function in one domain is the Fourier transform of the correlation function of the transformed

function in the other domain, it follows that the power observed as a function of direction cosines

is proportional to the Fourier transform of the spatial correlation function of the electric field

across the aperture. Equations (3) and (4) are for non-time-varying fields. As shown in Appen-

dix A [in particular, Eq. (A-9)], if we introduce the assumption that C is time-varying, then the

time-averaged received power as a function of direction cosines is proportional to the inverse

transform of the spatial correlation function where the average is over time, that is,t

- -= 2 < 'il, m) I,> Const x 4v goQ (u, v)i*(u +x, v+y)> dudv . (6)

t As discussed in Appendix A, this relation depends on the reasonable assumption of apace stationarity of the
aperture distribution C. That is, the power level may vary across the aperture, but apart from this, the cross
correlation of the random time variations occurring at two separate points on the aperture depends only on the
separation of the points and not on their location.
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.So in measuring oo(qp), we are really measuring the spatial correlation function of the wavefront

irregularities at the target; this is as good a statistical description of the irregularities as has

been considered to date.t
By similar reasoning we can show an equally important fact - that the spatial correlation

function of the signal received on the ground (time average of the product of two receiver outputs)

is the Fourier transform of the average power as a function of the coordinates x and y at the

target. This fact is of obvious relevance to radar interferometry, and we shall investigate its

consequences in Sec. II-D. The specific relationship [Eq. (A-t0) of Appendix A] goes as follows:

<1 f(x, Y) I?> (-/(p, q)U#/* (p + 1, q + m) dp dq>. Z (1, 0) , (7)

where we define the (complex) number Z (, AT) as the cross correlation obtained by time-

averaging the product (taken with a relative delay A-) of the two voltages received at points
spaced by a vector separation ir on the ground plane. The station separation X is characterized

by the direction cosine differences I and m.

B. Power Reflected From the Target as a Whole

Radar astronomy targets are of course very large bodies, usually spherical. The received

echo is made up of the superposition of individual echoes from a very large number of individual

regions, each of which can be regarded as approximately planar, so that the development of the

preceding section is valid for each region. Moreover, if the echoes from different regions

fluctuate independently, superposition of power (rather than voltages) is permissible.
The received power (per steradian) per square meter of surface at a given point on the sur-

face will be given, of course, by the radar angular power spectrum ao(gp)/4r, where p is now

the tilt of the radar line of sight from perpendicularity with the local horizontal. (Transmitter

and receiver are assumed collocated and one watt per square meter is assumed incident on the

target.) Figure 3(a) shows a hypothetical radar angular spectrum plotted in polar coordinates.

An ocean area on the target could be expected to give a large narrow polar plot of oo (qp) concen-

trated near small values of q(, whereas the yo(,?) function of rough terrain would be lower in

magnitude and extend out to greater values of (.
There have been two basic approaches to radar study of lunar and planetary surfaces. The

first is to assume that the body is uniform; that is, on the target surface ao(p) is everywhere

the same. Attention then centers on finding out what this o((p) function is, and then inferring

average terrain characteristics by using the methods discussed in Ref. 3, based on Eq. (6). The

second approach is somehow to isolate different regions of the target surface, presumably hav-

ing different ao(q0) functions, and to study the power reflected from each region. The methods

of Ref. 3 then re-enter the picture, but now as a tool in determining average features of just the

local region. (We shall see shortly that it is not i ecessary to perform the isolation by using

narrow antenna beams; other methods are available.)

t If the spatial wavefront undulations at the target are a gaussion random process, then statistical information of
a higher order can be inferred frno first-order and second-order data, and these data thus tell the whole story.
If non-gaussian surface variations are suspected, it would be important to consider some form of experiment to
develop higher-order statistical information, since in non-gaussian cam, first-order statistics and second-order
statistics (such as ao(4)) do not specify the higher-order statistics.

7



We now introduce the assumption that the target is spherical and see what can be said about

the total received echo power from such a target. If the spherical surface is uniform in the sense

that all parts of the surface have the same angular power spectrum a (0), say that shown In polar

form in Fig. 3(a), then a head-on view of the body would appear as shown in Fig. 3(b), where the

darkness of the shading is proportional to reflected power per square meter of incident wavefront.

This function P(x, y), representing echo power density across a hypothetical transverse plane in

front of any target, is called its radar brightness distribution. The circular region on this plane

projected by the spherical target is called the target's apparent disk.

At a point on the target where the normal to the spherical surface makes an angle 9P with the

line of sight from transmitter and receiver to the target, one square meter of the apparent disk

will return toward the receiver fao((p) sec p]/4w watts per steradian for every watt per square

meter of wavefront incident. The sec (p factor is necessary because we have defined vo(q,) as

cross section per unit area of surface rather than per unit area of wavefront; there will be see 9

square meters of surface for every square meter of incident wavefront.

Figure 3(c) shows the way in which the polar plot of a0 (4) in Fig. 3(a) expresses the intensity

of the reflection at various points on the surface like point P. Note carefully that this a 0 () tells

the story only for reflection back along the direction of the incident radiation; a o(qp) does not say

anything about the power reflected off in other directions. [For this we would need the complete

angular power spectrum a 0o(, (', 6).I

The brightness distribution P(x, y) for a uniform sphere is obtained trivially from the fact

that there are ao(V) sec ( square meters of cross section per square meter of wavefront. Thus,

P(x, y) dO is defined as the number of watts per square meter received on the ground in a cone of

unit solid angle dS2 with its vertex on the ground; all this assuming still that the target is illumi-

nated with a plane wave of power level one watt per square meter. Since a square meter of tar-

get subtends the same solid angle at the ground as vice versa, we have

P(X, Y) = a Pp) sec ( = a 0 sin a x2 +y~ <a 2

aT72 _2

where a is the target radius.

The total effective cross section a of the target can be obtained by adding up all the a 0(4p)

contLibutions over the entire surface illuminated by the incident signal. We have for a in
square meters

a = awrRdR a ((P)sec (p= Zlra 27rS a ((p)sin rpd~ (9)

since R = a sin (P. (R is the radius of an annular strip of integration on the apparent disk of the

body.) That is, if there is an incident transmitted wave at a power level of one watt per square

meter of wavefront, then a/47r watts per steradian will be reflected back toward the transmitter.

It is interesting to rewrite this expression for total cross section a' in terms of two param-

eters of the surface itself, called the reflectivity p, and the gain or directivity g. If the incident

transmitted signal reaches the target at a power level of one watt per square meter, then ob-

viously a total of ra 2 watts is incident on the target. The total power reflected from the target in

all directions is [by steps similar to those leading to Eq. (9)]



, ..... sin W• ((p ,•o(@ G) e dQ•00

/2,r steradians

4I,0 -o Sa , o(v, (p', 0) sin qP sin t0 do (10)

n',•Iei ect 1ri'y p is defined as the ratto o0 totrl reflected power to total incident power, and is
t/,;fý-.o ý-q (10),

oI,./0 " d/ 'z 7o(d, p', e) ain psin'(de (Id)
dr d0 ,10 0

S.` -'2 #,v 3 is defined in jitst the &a&e way as is the more familiar antenna gain or di-
v. R me ly r kAFi ttio:

7 na] refl'.ected power If re~lection were as strong
g = in lU disections as it is loward the transmitter]

g Actual total reflected power]

4w -_ __a4jW/Z ((p) sin ip d (

q. (1A 71 2 d9f d q, 7 fo'o¢ a ' ( e) sin (p sin (' de

We see from Eqs. (9), (11), and (12) that the wver-all cross section a can be expressed as

2
a = ra Pg

i.e., as the product of three factors, wa2 (1he area of the apparent disk of the body), the quantity
p, which depends only on the dielectric pr-opertieii of the body, and g, which depends on the

terrain geometry. Measurement of a and its subsequent separation into these three factors is
an important radar astronomical problem since kltowledge of g gives considerable knowledge
about terrain shape, and knowledge of p reveals much about the material of which the terrain is
composed. However, as Eqs. (It) and (12', show, ý3oth p and g depend on a0((p, (', 0), and the
simpler ao(p) does not give enougt information to compute p and g separately. As Pettengill
has pointed out,5 in order to separ.te p and g, it is necessary to make bistatic measurements

over a variety of angles (p, 9', and 0, w'.ich is n.)t possible on radar astronomy targets from
the earth alone, but instead require;s some sort of radar space probe.

C. Time Delay (Range)

We have just looked at one way of spl:tting up the echo power, saying that so much of the

total radar cross section may be attributed to the projected area, so much to reflectivity and so
much to directivity. There are other ways of dividng up the effect of the target on the echo pro-
duced, for example according to the time delay or frequency shift, and we shall find these to be
much more important. We are particularly interes::ed in any method that will allow resolution

of portions of the echo coming from different places on the target.

Different portions of a deep target wll return energy at different delays. Loci of all points
ha••nrg , on:•.usanf cel.ty T will be conco;ntria spheres of radius cr/2 about the transmitter-receiver

location, or if transmato- 4-.- e'eiver are not collocated, these loci will be ellipsoids of revo-
lution with transmitter and receiver localions as foci, and a semimajor axis equal to cr/2. If
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the target is remote enough these concentric spheres or ellipsoids can be approximated by par-

allel planes, and we shall assume that this is the case. Thus, at great distances for a body of

any shape, an observer standing at a point perpendicular to the line of sight from radar to target

center will see a scale of range reading linearly along the line of sight [the solid lines in Fig. 4(b)].

If the target is a sphere, these loci of constant range are circles as one views the target head-on

from the radar [the solid lines of Fig. 4(a)].

Fig. 4. Contours of equal range (solid lines) and equal
doppler offset (dotted lines) for a spherical target. 1
is the rotation vector defining the polar axis of the
body. A pair of regions (heavily shaded) can be asso-
ciated with the echo returning witha givendelay r and
doppler offset f.

TO OBSERv•E (b)

Clearly, one can isolate returns from regions lying at or near one of these loci of constant

range by transmitting narrow pulses and observing the received return after an appropriately

adjusted delay.

Going back to Fig. 3, the sketches (c) and (d) indicate how the average power response to

narrow pulses would look if the target were uniform with a radar angular spectrum ao (9p) of the

form shown in (a). In Appendix B it is shown that the distribution of power (actually cross sec-

tion) as a function of time delay T for a uniform spherical target (expressed in square meters)

is actually

o(T) = racao(Cos- ICT (13)

where c is propagation velocity and a is the target radius.

D. Frequency and Phase

It has been mentioned several times that, because of the inhomogeneous nature of the target

terrain, there will be irregularly different amplitude, phase, and polarization direction of the

electromagnetic signal at different places on the wavefront of the reflected signal, even if these
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quantities are constant across the transmitted wavefront. As long as the transmitter, receiver,
and target are rigidly fixed relative to one another, there being no relative rotation of the target,

then each transmitted Fourier component sinusoid arrives at the receiver as a sinusoid with a
different but constant amplitude, phase and vector direction. However, at different receiver

points these quantities will be randomly different constant values, if the target is rough.
If now the target rotates, these satial irregularities in the wavefront will pass sideways

over the receiving point at a certain speed in a certain direction and will give rise to fluctuations
with time of the amplitude, phase, and polarization direction of the sinusoidal electromagnetic

vector.t This means that what started out from the transmitter as a sinusoid will appear at the
receiving antenna output to be a narrow-band noise of some type. The faster the rotation of the
body, the wider the bandwidth of this narrow-band noise.

There is a second way of putting this: since some portions of the rotating and presumably
rough target are moving toward the observer and some away from him there will be a spread or

smearing of the frequency spectrum of any sinusoid incident on the target.

There are, then, these two ways of looking at the behavior of the phase and frequency [the
trigonometric argument of Eq. (i)] in the received signal. Interferometer techniques, those in-
volving more than one receiving point, are more conveniently analyzed by considering the motion

sideways across the line of sight of the irregularities in amplitude, phase, and direction of
polarization. What happens at a single radar receiver can be treated more readily by looking at
the velocity of motion along the line of sight of various parts of the target producing echoes.
These are just two different ways of looking at the same set of phenomena.

Let us look first at the velocity of radial motion of various points on the target. It can be

shown fairly simply* that on a distant rotating body the locus of all points that have equal com-
ponents of velocity along the line of sight to the target center is the line formed by the inter-
section of the surface of the body with a plane parallel to the plane of line of sight and polar axis.
Moreover, the separation between this plane and the plane of line of sight and axis is proportional

to the velocity. This means that a head-on view [such as that in Fig. 4(a)J of a body of any shape
would show loci of target points producing equal doppler shift in an incident sinusoid as straight
lines running parallel to the line formed by the polar axis. These lines are spaced proportion-

ately with doppler shift.
Clearly, one can isolate returns from regions lying on or near one of these loci of constant

doppler offset by transmitting a narrow-spectrum sinewave and observing the received return at
an appropriately adjusted frequency offset. These loci are shown dotted in Figs. 4(a) and (b).

Looking at the target from a distant point on a line perpendicular to the radar line of sight
and in the plane containing line of sight and polar axis [Fig. 4(b) J, these same loci of equal ve-

locity toward the radar are still straight lines spaced equally with doppler shift. It is now clear

why we have investigated what the loci of constant range and constant frequency look like from
this particular distant point at right angles to the radar line of sight; for this situation only,

range and doppler frequency both read linearly along two perpendicular axes, irrespective of the

t The sinusoid is gsnerated by motion at the propagation velocity of the electromagnetic field of wavelength X
along the line of sight. This motion should not be confused with the (much slower) sideways motion of the irregu-
larities we have been discusing.

t For example from Eq. (8-6) of Appendix B.
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Fig. 5. Method of deducing direction of motion on the ground of corrugations in received wavefront:
(a) hypothetical case of transmitter motion locked to target rotation; (b) actual case of transmitter and
receiver stationary and approximately collocated; (c) view of ground plane showina diffraction pattenm.



shape of the body. This distortionless mapping property6 (of points on the body onto points in

the range-vs-doppler plane) will prove to be a convenience later on.

If one looks head-on at the target, as in Fig. 4(a), contours of equal doppler shift intersect

contours of equal range (which for a sphere are circles, as described in the preceding section)

In at most two points as shown by the shaded regions. Thus we can isolate and study such a pair

of points on the target surface simply by isolating that part of the echo having a given time delay

and simultaneously a given frequency shift.

For a uniform spherical target, the distribution of power as a function of f, the frequency

offset from a "zero doppler" represented by the radial velocity of the target center, is shown

in Appendix B to be

2f fl c Os (Real values only) cs

X - ,'T-2 , (zfoailccos ai / dT (i4)

(expressed In square meters), where fo is the carrier fr' quency, 0 is the rotation speed ix.

radians per second and a is the tilt of the polar axis from perpendicularity with the line of sight,

Figure 3(e) illustrates this quantity a(f) for the particuiar %o(4') sketched in Fig. 3(a).

Now let us look into the other method of visualizing the behavior of the phase and rate of

change of phase of the received signal. We wish to examine the motion perpendicular to the line

of sight of the corrugations in the wavefront reachiing the radar receiver after refiect:io:• from a
distant target, and we especially want to know •',e degree of correlation of the r~iirtls .•e•..elved

at two points spaced by a (vector) separation '4 as a f~nctibn of relative dela;y Ar of fne station

behind the other one •' distant. This is exrressed by f:•.• quatity Z intr&',Ž,.ed e~ilier in con-

nection with Eq. (7). /

The method we shall use to deduce .ihe motion of the w •;vefro:,• .r-regular.it•,s at the receiver

is depicted in FIgs. 5(a) and (b). We sh.all consider two situ•''ons, ;.,' '.artifi•kial" but easily
analyzed case [Fig. 5(a)], in which th- transmitter rotates with *.he v-uget. A'nd the "actual" real-

life situation [Fig. 5(b)), in which ,dLy the target rotates and the t,• ansmit er and receiver are
close together and are fixed relative to the target center. /'

Three arbitrary points forrAlng a triangle are chosen on tho •.rget ody itself. Consider

point. t and 2 of Fig. 5(a) or (b). Line AB Is the locus of all poi;,6 /a plane at the receiver

(perpendicular to the line of sight) for which the phase angle of the/ omposite sinusoidal signal

reflected by points I and 2 is the same value as at the receiverj That is, it is the locus of all
points having the same d•.fference in time-of-flight from trar'd•mtter to receiver via the two

points i and 2. Simila, ly, the line CD is the locus of all T:olnta satisfying a similar condition
regarding propapatior, via points I and 3. Considering f 6w that points 1, 2, and 3 are actually

in motion in differen~t directions due to target rotat' 4ti, It is possible to find the direction and

speed of motion of the wavefront irregulariti•es e,/ithe receiver by finding the direction and speed

of motion of poin~t Q, the intersection of AP .and CD.
Before get.ting to the desired c-•io ',• tran~smitter and receiver collocated (Fig, 5(b)), let us

analyze the s~rtlffcial situation depicte •_iz FIg. 5(a). Here the receiver is fixed, but the trans-

mitter is imagined to swing aroun(, "ks the target rotates, always being at the same distance from

P1



Z 13-34-11111

(0)

Fig. 6. The space-time correlation function Z(LA,&-) for (a) the
artificial case of a frozen echo pattern and (b) the actual case.
(The quantity Z con be complex in general. For clarity It Is
drawn as a positive real quantity.)

14



the target and with the same orientation relative to it.0 Thus, as the target rotates, the reflected

wavefront at the target has its phase, amplitude and polarization corrugations "frozen"; that is,

referring to Fig. 5(a), the times of flight from transmitter to points such as 1, 2, and 3 do not

change. A moment's reflection convinces one that the direction of motion of the corrugations as

observed on the ground must be in the direction in which the line OQ would swing if it, too, were

frozen to the target at point 0.

The important thing about this artificial example is that if we imagine two points Q and Q1

equidistant from the target and mutually separated by a distance W lying parallel to the direc-

tion of pattern motion, then the following effect takes place. The pattern of irregularities that

sweeps over the receiver point Q (and thus generates effectively a noise-like fluctuation in the

receiver output at Q) is identical to the pattern at the point Q' at a later time equal to the time

taken for the pattern to move the distance .T. The velocity of pattern motion in the neighbor-

hood of Q is clearly

v f OR cos a

where R is the range and a is the polar angle, so that the time delay is

AT0

For radar astronomy targets, all the target points are essentially at the same range R. Fig-

ure 5(c) shows a plan view of the ground plane with the vector ;; indicated by the arrow, and a

snapshot of the variations of amplitude and phase across the wavefront schematized by the curved

contours. Under certain conditions it may be assumed that,on the average, these contours are

circles; that is, the pattern changes equally rapidly with distance in all directions on the ground

plane. Among these conditions is the case of a spherical target with uniform surface properties,

i.e., uniform a (P).

Imagine now that we have two receivers Ri and R 2 spaced by the vector distance S, making

an angle 6 with the pattern velocity v, and that we wish to compute

Z(S AT') = <V•t) V'* (t + At)>

the cross correlation of the electric fieldW and"W. observed at the two receivers, as a function

of the separation T' and a lag AT of the first signal behind the second. The quantity Z is complex

in general; that is, it can be viewed as embodying the phase and amplitude of a sinusoid. (Just

how this sinusoid can actually be generated in an interferometer experiment will be discussed in

Sec. IV-F.) We will now describe heuristically how a Z(df, Ar), such as is depicted in Fig. 6(a)

expresses certain target properties. (This is an extension of Eq. (7) in which Z(aT, 0) was re-

lated to the power across the target aperture.)

For S = 0, this function Z is the autocorrelation function of a single receiver output, and

we already know the Fourier transform of this; it is just the power spectrum of the fluctuation

a(f) as expressed in Eq. (14) and depicted in Fig. 3(e), except that in this case this power spec-

trum is half as wide, because only the target-to-receiver distance is changing, the target-to-

transmitter distance being constant. Denoting the transform of o(f) by t(&T), we haves

t Equivalently, the transmitter could be fixed and the receiver move synchronously with torget rotation.

* dt(AT) is a quantity to be discussed further in Sec. IV-E.

15



Z(0AT,) = WAT/2).

It is almost equally simple to determine the zero-delay correlation ZO(, 0), still sticking to

our "artificial" example of the synchronously rotating transmitter. The function Z(cT. 0) is de-

rivable from Eq. (7), which states a Fourier transform relationship between ground space cor-

relation function (with zero relative delay) and power across a plane aperture. If we imagine

the aperture to be the apparent disk of the target, then the distribution of power across the ap-

erture <I (x. y) 2> in Eq. (7) is actually the brightness distribution P(x, y), defined earlier.

Thus

SS• P(x, y) exp fjZr(px + qy)] dx dy = <V(-4, m) W'*(! + p, m + q)> dtdm z Z(J, 0)
Aperture

That is, the inverse transform of the brightness distribution is the ground correlation Z taken

with time shift AT = 0, and with station separation given by the two direction cosine arguments

p and q. With no loss of generality, we can take d parallel to one of the axes of the aperture in

Fig. 2, say the x axis (so that q = 0): then

S exp [ jiZrPx IdxA P(x, y) dy = Z(a', 0)
Aperture Aperture

In other words, the right side is given by the single inverse transform (in x) of the integral along

y of the brightness distribution P(x, y). Now notice that for a uniform spherical target the shape

of Z(O. 0) is the same (except for a scale factor) as 2(0, AT). This has to be so because the sin-

gle Fourier transform with respect to AT of the latter is just the echo power spectrum a(f), which

in turn is simply the integral of the brightness distribution P(x, y) along one of the constant fre-

quency strips in Fig. 4(a), i.e., the integral fAperture P(x, y) dy.

About the only other thing we shall need to know about Z(•', AT) in order to discuss inter-

ferometry experiments later is the value of AT that will maximize Z for a given station spac-

ing I' Referring to Fig. 5(c), in which the spacing aS lies between points R1 and R2., we see that

if the ground pattern has the generally isotropic character assumed earlier, maximum correla-

tion will be achieved if, in performing the correlation, the first signal is delayed by a AT equal

to the time taken for the pattern to move the projected distance R-- , that is,
I Z

= d cood = dcosd
max OR cosa

We shall make use of such a relation later in deducing the planetary rotation vector 6 from -,

the ground pattern velocity. Note that the more nearly S lies along ;, the larger the value of

Z obtained by inserting the best delay ATmax in processing the two receiver outputs; indeed.

when 6 = 0, the full correlation Z(a' Armax) = Z(0, 0) is obtained because, since the diffraction

pattern is frozenthe two received voltages are identical apart from a time shift.

With this "artificial" example now disposed of, most of the groundwork has been laid for

discussing the "actual" case. Figure 5(b) shows the transmitter, target, and ground plane for

this situation, and now the transmitter is assumed fixed. To find the direction and speed of

motion of the ground pattern we once again examine the motion of point Q, the intersection of

equiphase lines AB (due to reflection from target points I and 2), and CD (due to reflection from

I and 3).
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The actual rotation vector of the target is 6. We can express this as the vector sum of two

components 01 and 02 along the line of sight and perpendicular to it, respectively. We have

a= a sina, and 02 = 0 coma. We caln get the over-all behavior of lines AB and CD by con-

sidering these two rotation velocities separatelyt knowing that the true motion of points 1, 2,

and 3 is the vector sum of motions due to two rotations Oi and G2. Now if we seek the motion

of point Q, the intersection of AB and CD, it is clear that component 0a has no effect on lines

AB and CD except that they rotate at an angular rate 01, the point of intersection Q remaining

fixed. This is true because the propagation path lengths are not changing. Therefore we need

only consider the motion of point Q due to A.A Since 0z is an angular velocity that the target

would have if its polar axis were perpendicular to the line of sight and it rotated with a speed

02 = 0 cosa, we can state that the motion of point Q is exactly the same in our "actual" ex-

ample as it was in the "artificial" example of Fig. 5(a), except that the speed is twice what it

was before, since both the propagation paths (up and back) to each target point are changing their

length with time, so that point Q must move twice as fast toward Q1 to equalize path length dif-

ference via points I and 2 and via i and 3.

Note that the contribution to the ground pattern produced by reflection from any point on the

target has the same velocity of motion as that produced by a reflection from any other point,

namely in direction QQ', and with twice the speed that a radius vector OQ from the target center

would swing,

v = Z0R cosoa

This means, among other things, that there is no hope of distinguishing the echoes from differ-

ent portions of the target on the basis of different velocities of their contributions to the ground

pattern. We must go back to resolution according to range (Sec. Il-B) or doppler (Sec. IH-C) or

the brute force method of using sharper antenna beams.

There is a second difference between the "artificial" and "actual" cases that must be pointed

out besides the double velocity of the ground diffraction pattern motion. Since the propagation

path lengths from transmitter to target are constantly changing as the target rotates in the
"actual" case, the wavefront irregularities of amplitude, phase, and polarization direction at the

target are not "frozen" as was true in the "artificial" case, but are constantly changing with time.

Thus the contours of Fig. 5(c) are not only in motion, as before, but are changing with time.

This means that there will be an additional diminution of the correlation Z(1, AT) from the maxi-

mum, over and above the factors discussed for the artificial case. (These factors were the fail-

ure of the direction of S to coincide with that of v', and then, of course, the nonzero values of

variables d and AT.) In particular, even if one inserts the AT that maximizes Z for i given

CT, namely &7max, which is now given by

d cos6 (5

•max ZfRcosa )

he does not get the full correlation Z (0, 0) when X lies along V because the two received volt-

ages are no longer exactly identical apart from a time shift.

t The author is indebted to J. V. Evoans for pointing out this simple method of analyzing the motion of point Q in
the "actual" case.

STrue except for the singular case of widely spaced transmitter and receiver points and the target axis appearing
almost exactly end-on from the ground QI >> Q2).
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If the time rate of this pattern change were a sufficiently large fraction of the fading rate

produced in a single antenna due to motion of the pattern, then we would know that Eq. (15) would

not be valid. The best value of AT, A-Tmax would be shifted toward zero because, since the pat-

tern is decomposing as it moves, a higher degree of correlation would be obtained by advancing

A-r slightly to head off the decomposition. Thus, before we can be sure Eq. (I5) is valid, we

must be sure that the pattern decomposition can be neglected compared to pattern motion.

We can determine how big a part pattern fluctuation plays relative to pattern motion by in-

quiring how much of the signal fluctuation at a single receiver is due to motion and how much is

due to pattern changes with time. It will now be shown (in the next paragraph) that all the fluc-

tuation rate observed at a single receiver is due to pattern motion; it then being a safe assump-

tion that for spacings d of the order of several multiples of the correlation distance, patterr

decomposition is small. Equation (15) is then valid except for the case where one simultaneously

has very small values of the angle 6 and large values of d.

Comparison of Figs. 6(a) and (b) shows that the profile of Z(0, Ai-) for the "artificial" case

of a frozen pattern of irregularities is twice as wide as the same profile for the "actual" came

about which we are concerned. This is known from considering the radial motion relative to the

observer of the different points on the target; a given such velocity [FIg. 4(a)) will produce one-

half the doppler shift when the transmitter-to-target distance is not allowed to change fFig. 5(a) -

the "artificial" case] as when the transmitter and receiver are collocated (Fig. 5(b)]. Yet we have

already seen from different considerations that the sideways pattern velocity across the ground

in the "actual" case is exactly twice that of the "artificial" case. But the physical size of the

pattern corrugations is the same in both cases, as ensured by the fact that Z(d, 0) is the same

for both cases. Thus, if the physical size of the irregularities is the same, and the velocity of

motion along the ground is twice as large in the "act 1" case, then this completely accounts for

the fact that the echo power spectrum is twice as wide in the actual case. The pattern decompo-

sition makes a negligible contribution to the fading rate, relative to the pattern motion.

It is instructive to compare these notions on rotating planets with equivalent ideas that have

been applied for some years to the ionosphere. If one imagines a plane wave incident on a plane

ionosphere overhead, then if the ionospheric irregularities are frozen, the horizontal motion of

the ionosphere (an ionospheric wind) causes a motion along the ground of the frozen irregularities

in the wavefront pattern. In actuality, however, since the ionosphere is a soft target in which

there are turbulent effects, constant random alteration of the wavefront irregularities is present.

With the ionosphere, the inability to recover complete correlation by readjusting T even when

T coincides with v in due to the changing shape of the target; with a planet it in due to the fact

that the transmitter is stationary instead of moving synchronously with target rotation. Briggs,

et al.,7 have made a lengthy analysis of the use of such interferometric methods to study ground

pattern velocity and the way in which the moving ground pattern itself fluctuat's with time. Their

analysis goes a good deal further for the ionospheric case than the notions we have presented

here for the rotating sphere case. The aim here has been simply to determine 'Amax [Eq. (is)]

without deriving the complete function.Z(cT, AT).

R. Polarisation

Most of the radio and visible energy from cosmic sources is relatively unpolarized; that is,

most of the energy in the arriving signal w(t) not only has a randomly time-varying amplitude and
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phase [W•t) a random complex variable], but also a random time-varying direction of polariza-

tion. By contrast, in making radar observations the character of the polarization is controlled

on transmission for the dual purposes of conserving system efficiency (by not wasting power into

unnecessary degrees of freedom of the signal) and of studying those target properties that affect

the polarization. Since the target does not in general produce a complete randomization of the

incident wave, it is often found that a large fraction of the received energy arrives systematically

polarized (see, for example, Refs. 5, 8 and 9 for certain lunar results).

Such partly polarized radiation can be resolved uniquely into two parts, the "unpolarized"

(i.e., randomly polarized) component, and the (systematically) "polarized" component. The un-

polarized component will have a narrow-band noise spectrum (due, for example, to the doppler

spreading discussed in Sec. II-D) and if resolved (for example into two linearly polarized com-

ponents at right angles to one another) will exhibit zero correlation between the two. The polari-

zed component, on the other hand, may or may not have a nonzero bandwidth. In either case the

components at right angles are mutually coherent. That is, the electric vector traces out an

ellipse (Fig. 7) which may be continually fluctuating in size (at the bandwidth rate), but maintains

a constant orientation, ratio of axes and sense of rotation.

l5-U,--1I]

V

Fig. 7. Path traced by head of a vector representing
received electric field strength as a function of time
(complete polarization).

P Y

The polarized component is specified by its power Pe' orientation angle X and axial ratio r.

The sense of rotation is contained in the sign of r; that is, r > 0 for left-hand circular polariza-

tion and r < 0 for right-hand circular. In Fig. 7, the wave is propagating along the z axis into

the paper; thus X is clockwise from the x-axis, and, as the arrow indicates, r is negative.

The unpolarized part is specified by a single parameter Pu' its power. The degree of polar-

Szation m is simply P e/P, where P equals the total power Pe + Pu. Since in radar experiments

the wave in transmitted completely polarized (m = 1), the term depolarization (I - m) is perhaps

more frequently encountered in radar usage than is the degree of polarization m. A monochro-

matic (i.e., single-frequency) signal is completely polarized, by definition. It should be noted

that one sometimes encounters other definitions of depolarization in which a monochromatic

wave can be said to be "depolarized." For example, if vertical polarization is transmitted, the

horizontally polarized received component is sometimes called the "depolarized" component.

Such a definition obviously is not equivalent to that employed here.
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There are several dlfferent ways of rearranging the quantities P, m, x and r into a more

usable form, and the preferred rearrangement depends on the particular properties of the radia-
tion that are most interesting. For radio engineering purposes the most interesting choice is

usually the four Stokes parameters 
0

I=P

Q =ml coo Z(tan" r) cos Zx

U ml cos 2(tan"I r) sinZx

V = ml sin Z(tan"I r) (16)

because of the ease with which the effect of various forms of targets and receiving antennas may

be calculated. The parameters have the following physical interpretation: I is of course the
total power, Q is the excess of x x 0 linearly polarized power over that at right angles to it, U
is the excess of x = 45' linearly polarized power over that at right angles to it, and V is the ex-

cess of left-hand circular over right-hand circular power. The four quantities are often written
as a column matrix or vector, and are then referred to as the Stokes vector S. (Note that this
is a vector in the mathematical sense and is not a vector property of the wave in physical space.)

The usefulness of the Stokes representation in deducing the effects of signals on specified
antennas is clear from the above description of the parameters. The effect of a target on the in-

cident signal turns out to be simply defined too. Specifically, the Stokes vector Sr of the re-
flected wave is related to the Stokes vector Si of the incident wave by the set of simple linear

equations given by

Sr = MSi , (17)

where M is a four-by-four matrix called the Mueller matrixýt

The Mueller matrix representation has proved quite useful in studies of simple radar targets

such as cones, corner reflectors, and so forth,1 1 especially when the target is maintaining a fixed
aspect, thus returning a monochromatic (completely polarized) signal.

Of central importance in the study of a hard rotating radar astronomy target is the degree of

polarization

M = V/Q2 + uZ + VZ 18
I(18)

Only if the body is extremely simple in shape or not rotating at all relative to the line of sight

does one expect m to be unity. The more realistic situation involves complicated diffractive
and multiple reflection effects giving rise to the wavefront irregularities we have spoken of

earlier. The way in which m drops from the unity value it would have for an ideally smooth

shape (for example a sphere) as the surface roughness increases appears not to have been studied

t A matter of terminology is worth mentioning here. The elements of the Mueller matrix (which, like those of the
Stokes vector, deal with W._..) are sums of products of the elements of a matrix of vc.rgg that charCterldzes
the target also. This two-by-two matrix of voltages is called the mitaflzW matrix of the target and is something
entirely different from the tg.rtLiscttingJ function to be defined in Sec. IV. The reader may already be familiar
with the scattering matrix; it should not be confused with the scattering function.
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in the literature. Indeed it is not entirely clear that m should drop completely to zero as sur-

face roughness increasest

The theory of depolarization of electromagnetic waves by reflection from rough surfaces

seems to have been given very little attention,$ although a great deal of experimental data exists.

P. Beckmann and his coworkers have made an encouraging start on the theory. Beckmanz has

treated the case of random surfaces with radii of curvature much larger than the wavelength, and

Chytil 3 has examined a variety of target shapes (such as disks, strips, cylinders, spheres and

prisms) in the region X - a to X = a/10 (where a is the target size). Chytil finds that with linearly

polarized radiation incident, as X -. a the echo power becomes about equally divided between com-

ponents parallel with and perpendicular to the incident polarization direction for all shapes.

M. SOFT TARGETS

According to the definition adopted earlier in this chapter, soft targets include those that are

changing shape, such as turbulent clouds of one sort or another. The soft targets of greatest ra-

dar interest are the ionized regions (sun's corona, planetary ionospheres, and the interplanetary

medium), and this part of the present chapter will focus on the influence of such regions on the

transmitted signal.

On the other hand, clouds of material particles, such as the zodiacal particles, terrestrial

raindrops, etc., are of only minor radar astronomical interest and it is not necessary to say

very much about them here. They are usually so rarified that multiple reflections can be neg-

lected, and a computation of radar cross section of a cloud or portions of it consists simply of

multiplying the cross section of a single typical particle by the number of particles' in the region.

If the pirticles are perfectly conducting spheres,!4 for example, the cross sectionper particle

is that given by Fig. 8, in which it is seen that when the radius a is much smaller than the wave-

length X, the cross section falls off as the fourth power of a/X (the "Rayleigh scattering law").S

This a/A << condition holds with such soft targets as the zodiacal regions and terrestrial rain

clouds, and it also holds in a rough quantitative way with ionospheric free-electron scattering.5

(The cross section per free electron is obtained by substituting the classical electron diameter

in the Rayleigh law.) It is interesting to observe in Fig. 8 that in the spherical case as one passes

from the aA << 1 situation (relevant to some of the soft radar astronomy targets) over into the

a/X >> I case (to which our discussion of hard targets has been directed), the cross section ap-
2proaches wa , the projected area of the sphere, as would be expected from the discussion in

Sec. II-B!

t In reflection from random media where there are no multiple reflections and the Individual scatterers have a
strong anisotropy, the depolarization may not bi pomplete. This is suggested by a study of the reflection of RF
signals from clouds of randomly oriented dipoles" for which It was found that m = 1/2.

* The •tkes vector-Mteller matrix formalism might have some application to hard radar astronomical targets.
(Parke gives a very complete survey of this formalism.) This Is suggested by the following Interesting properties.
In the case of multiple reflections, the M describing the over-all process is the product of the M's describing
the Individual reflections, and when a number of wavelets add to give a composite signal, although the over-all
M Is not the sum of the individual M's, the summation can be handled in term of the scattering matrices of the
reflections. Conceptually at least, this sort of formalism then provides the possibility of theoretically studying
the polarization properties (Sdr of an echo made up of a sum of multiple reflections.

§ It Is not necessary that the body be spherical for the fourth-po ir low to hold.

I Notice here that the peculiar method of defining all radar cross sections as a power ratio times an arbitrary 4,
[referred to In connection with Eq. (5)) does have the advantage that the cross section of a perfectly conducting
sphere equals its projected area. It Is difficult to Imagine a single other advantage of 'his curious convention.
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As we have just indicated, soft targets of radar astronomy interest are limited for the most

part to ionized media, since clouds of material particles (such as the zodiacal particles) suffer

the (a/k)4 dependence and are at prohibitively large ranges; and those effects in our own atmos-

phere not associated with its ionized condition are minor.

In discussing the reflection of electromagnetic signals from ionized media it will be neces-

sary here only to review one or two points and to emphasize the dissimilarities of soft targets

and hard targets.

A. Reflected Power and Angular Power Spectrum

The effective radar cross section of a given volume of plasma can vary over the enormous

range from simply the sum of the cross sections of individual free electrons (free electron

scatter) to the unity reflectivity obtained in the case of reflection below the critical frequency

(in the absence of collision losses). Exactly where in this range the effective cross section of

a unit volume of plasma will lie thus depends on many factors, principally the operating fre-

quency, electron and ion densities, collision frequency, magnitude and direction of the magnetic

field and the temperature.

When the target presented to the probing radar signal is a large and inhomogeneous body of

plasma, such as the sun's corona, then matters become quite complicated. Unlike the hard tar-

gets discussed earlier, the target material is in constant relative motion so that it is impossible

to use most of the neat properties one can attribute to rotating hard targets (such as the location

of loci of constant range or doppler offset).t

However, under certain conditions it may still be useful to retain some of these ideas, par-

ticularly the notion of radar angular spectrum. For example, although our own ionosphere is a

soft target, there are some reasonable constraints on shape (particularly the common assumption

that it has a general horizontal stratification, on which are superimposed statistical irregularities),

and the notion of angular spectrum of reflectionfrom the irregularities has proved quite meaningful

tAnd even If the ionized plasma target were rigid, its geometrical properties would be more difficult to evaluate,
since we are not always dealing here with reflection from oblects but mare often with penetration of the wave to
points where certain conditions on refractive index are fulfilled (these conditions being dependent on the direc-
tion of arrival). Thus it is even more difficult to associate the angular power spectrum with detailed structure of
the medium than It is with a hard target. (This association for the hard target case is discussed in Ref.3.)
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(see the last paragraph of Sec. 11-D). A first-order approximationIs to the true, highly irregular

state of affairs in the sun's corona has been to assume that it is spherically symmetric with a

general radial decrease of electron density, on which, as with the ionosphere, local spatial irreg-

ularities are superimposed, giving rise to a uniform roughness in the reflected wavefront; i.e.,

a definite radar angular spectrum ao (), uniform throughout the corona.

B. Time Delay (Range)

For soft targets, contours of equal time delay will no longer necessarily be contours of

equal range because the group propagation velocity in the plasma may be less than the free space

value. In particular, the total group time delay T will be twice the reciprocal of the integrated

product of group velocity and distance: i.e.,

S• : wls) do

where w is the group velocity and R is the range of the point of reflection. In general, the

medium will be dispersive; that is, w will depend on frequency. In the important case for which

both collision frequency and gyro frequency are negligible compared to the operating frequency f,

w(s) = nc a c - [fY(3)/f 2

where n is the index of refraction and fp is the local plasma frequency in cps;

f p(s) = 9.0 r-() ,

N being in electrons per cubic meter. If fp << f also, then we have the useful formula

2 - 81c (- R N(s) ds (19)
ZRf 20

which expresses the excess of time of flight over that In vacuo in terms of integrated electron

density along the propagation path (number of electrons in a one-square-meter column travers-

ing the radar-to-target path).

C. Frequncy

We have just referred to the fact that for a soft target, both the reflected power and the prop-

agation velocity can be frequency-dependent, and as is well known, the behavior of these quanti-

ties (and polarization too) can under certain conditions change violently with frequency. This

makes it possible, in principle, to deduce certain parameters in the corona, or in planetary

ionospheres, by means of measurements at different frequencies. This sort of technique has

been richly cultivated for years in the study of our own ionosphere (see, for example, Ref. 19)

whose various layers are studied by noting the frequency below which a test signal no longer

passes through but is refracted back.

It is clear that gross shifts in the frequency of the radar echo are to be associated with radial

components of motion in the soft target. For example, parts of the solar corona having the same

range but different velocities relative to the radar line-of-sight may thereby be distinguished one

from the other much as with various portions of hard targets (Secs. II-C and II-D). However, the

lack of target rigidity destroys much of the usefulness of range-doppler echo resolution.
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D. Polarization

The way in which the polarization characteristics of the incident radar signal are altered by
passage through a plasma in the presence of a magnetic field is quite complicated in the general
case. If there is no magnetic field, or if it is the incoherent scatter mode that is being employed,
then the polarization is unaffected- it is as though the reflection were from a smooth hard target.

When a magnetic field is present in the ionized medium, and for the common case of operat-
ing frequency considerably larger than both gyro and plasma frequencies, then propagation takes
place via two independent modes having opposite senses of circular polarization and slightly dif-
ferent phase velocities (neglecting collisions). When present simultaneously, these two waves,
the "ordinary" and "extraordinary," form an elliptically polarized wave whose ratio of axes and
sense of rotation do not change along the ray path, but whose plane of polarization does, because
of the different phase velocities. The rotation is cumulative in the sense that L •ontinues on the
return trip from the target rather than undoing itself. The total number of radians AX of this

Faraday rotation is20

AX = 4.72 S0R N(s) B (s) ds (20)fZ )

where B,(s) is the longitudinal component of magnetic field (in gauss). Note that there is a dis-
persion (strong frequency dependence) of the total amount of rotation. In the special case in
which the incident radiation is linearly (plane-)polarized, it can be considered the sum of equal-
strength right-hand and left-hand circularly polarized components. One propagates by the or-
dinary mode only, and the other by the extraordinary mode only, so that the composite signal
arriving is still linearly polarized - if not depolarized on reflection (see Sec. II-E) - but with the
polarization axis twisted by AX radians.

An ideally smooth target converts linear polarization into linear, and right circular into left
circular, and vice versaOt In preference to linear polarization, one often uses circular trans-
mitted polarization in conjunction with a receiving antenna adjusted for the opposite direction of
circular polarization so that the signal power received from a smooth hard target can be maxi-
mized independently of the Faraday rotation angle AX.

IV. MFABUREMENT MEl HODOLOGY

In the next few sections of this report, the way in which radar systems perform measure-
ments on radar targets will be systematized. In Sec. V we shall collect all the preceding notions
and list the way in which quantities of astronomical interest can be deduced from these radar

measurements.
The targets dealt with in radar astronomy differ from those discussed in much of the stand-

ard radar literature by their sheer physical size and large differential velocities. Very rarely
will these targets be extended targets, meaning that they more than fill the antenna beam be-
cause they are usually at extreme ranges; but, they will be what we shall call spread targets

tThe (normalized) Mudller matrix of Eq. (17) Is

1100 0
M= 0 1 00

00-1 0
[00 -1
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in both delay and frequency. That is, since they are so deep and since different portions are

apt to be moving differently relative to the observer, the returns are spread significantly in

both range and doppler.

If neither the range spread nor the doppler spread is discernible to the radar system in use,

we call the target a point nonfluctuating target. If the bandwidth of the signal is insufficient to

resolve the target in range, and yet there is a discernible doppler spread of the received signal,

we shall call the target a point fluctuating target. If the signal resolves the target in range but

with no observable doppler spreading we can treat the target as a deep nonfluctuating target. In

the general case in which observable range spreading and doppler spreading are present simul-

taneously we speak of a deep fluctuating target.

A. The Target Scattering Function a(r, f)

It has proved convenient to describe the average reflecting properties of a spread radar tar-

get in terms of its scattering function cr(r, f), the average reflectivity as a function of the two

variables delay and doppler shift. The scattering function can thus be depicted as a surface in

three dimensions, as in Fig. 9. The two independent variables are delay r(seconds) and doppler

shift f (cycles per second). The dependent variable o(7, f) drdf is defined as that part of the total

target cross section o(in square meters) that belongs to target regions that both reflect a signal

with delays of 7 to r + dr and at the same time subject the signal to doppler shifts from f to f + df.
A more concise discussion of the acattering function follows in Sec. IV-D.

The concept of a scattering function has proved useful in unifying various techniques of meas-
urement (this report) and detection.! Many of the measurement techniques we shall describe

shortly are nothing more than measurements (i.e., estimates) of the scattering function or some-

thing derivable from it. In Ref. I it is found that, under certain reasonable assumptions, a11 one

needs to know about the target in order to discuss its detectability completely is its scattering

function.

Several cases are shown in Fig. 9. For example, a stationary point target at delay 7 d would
have the scattering function depicted in Fig. 9(a), namely an impulse of value a at r = 7d and

f = 0. If the point target were moving toward the observer at a velocity v = cfd/Zfo (f0 being the

carrier frequency) the scattering function would appear as shown in Fig. 9(b). If the target (at

delay r'd and moving at velocity cfd/ZfO) could be regarded as having negligible depth in delay,

but as producing rapid random fluctuations in the returned echo, the scattering function o{', f)

would have the character shown in Fig. 9(c) - there would be a spread only along the f-axis. The

width B along the f-coordinate is proportional to the fluctuation rate. Similarly, if the fluctua-

tion rate were negligible, but the target were stilU quite deep and thus had a wide range spread,

the scattering function would appear as in Fig. 9(d). The duration of delays or "multipath spread"

it labeled L.

Figure 9(e) shows the scattering function of a hypothetical target having a significant spread

along both axes. Figure 9(f) shows a typical such scattering function for the important special

case of a uniform rotating rough sphere. As mentioned earlier, a uniform sphere is one having

the same radar angular spectrum o ((p) everywhere on its surface. Appendix B presents a deri-

vation of the following equation for 0'(7, f) of the uniform sphere of radius a, rotation speed 0

and angle a between polar axis and perpendicularity to the line of sight:
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(a) Stationary point target (b) Point target at delay rd moving
at delay Td. with velocity fd/2fo.
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(c) Point fluctuating target (d) Deep nonfluctuoting target
of fluctuation rate B. of depth L.
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(e) Deep fluctuating target. (f) Uniform rotating sphere.

Fig. 9. Scattering function of various forms of targets (the total volume
under the function is equal to a, the over-all radar cross section).
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0 c a osc. 19 c.2 ( )I
ofCo. 02- t/22f o (real values only) , (21)

where fo is the carrier frequency and c is propagation velocity. The 7-origin is at the target

center.

It will be recalled from Sec. U-D that, because of the mapping property of rotating hard tar-

gets, points in the 7, f plane correspond to locations on the surface of the target. Therefore a

measurement of the scattering function a(f, f) represents a map of reflected power from various

regions of the target with the correspondence being that given in Fig. 4. [Note the occurrence

in Fig. 9(f) of the same semicircular or semielliptical region in the 7, f plane as is shown in

Fig. 4(b). I

The scattering functions shown in Fig. 9 have been labeled to indicate roughly the two param-

eters B and L, the doppler spread and the delay spread, respectively [for 9(c) we have L = 0 and

for 9(d), B = 0J. An important attribute of spread radar targets is the spread factor, the product

BL. If BL < 4 the target is termed underspread, and if BL > 1, overspread. As pointed out in

Ref. 1, the radar detectability of a target of given total cross section

e{T, f) d" df

(the volume under the surface depicted in Fig. 9) decreases steadily with BL if BL becomes

greater than roughly unity. In the neighborhood of BL = 1, even when the over-all system sen-

sitivity is enough to overcome this loss in detectability, we shall see in Sec. VI-D uf this report

that it may become difficult to perform an estimation of the scattering function or derived param-

eters, a necessity for studying target properties in detail.

In order to discuss processes of estimating the scattering function, or derived properties,

we must make a short digression to introduce the notions of a matched filter and the associated

ambiguity function. (For a more detailed discussion see the paper by Turin.2 4 )

B. Detection of a Point Nonfluctuating Target - the Matched Filter

The simplest form of target is one whose scattering function is an impulse, i.e., a point

nonfluctuating target. As is well known, the form of receiver that will develop maximum signal-

to-noise ratio from such a target is a matched filter. (Most conventional radar receivers employ

matched filtering in the IF.) That is, denoting the transmitted waveform as x(t), if the noise

spectrum is uniform, the optimum receiver consists of a filter having an impulse response

m(t) = x(to - t) followed by a sampling device that observes the filter output at time to (where to

is an irrelevant time delay introduced to make the filter physically realizable, i.e., no response

before excitation). The matched filter has an impulse response that is a time-reversed version

of the signal. Since its complex frequency function is thus the complex conjugate of the frequency

function of the signal, a matched filter is often referred to as a conjugate filter.

It will be relatively simple and quite instructive to prove that this matched condition maxi-

mizes the signal-to-noise ratio as follows. Let X(f) be the Fourier transform of the signal

x(t) (i.e., its complex spectrum), and M(f) be the complex frequency function of the filter. We

want to adjust M(f) so as to maximize the output signal-to-noise ratio, defined as the ratio of

Sout, the square of the output voltage at time to due to signal alone, divided by Nout, the output

noise power. The latter is

27



out 2 "jM(f)idf (22)

for input noise of uniform spectral density N12 watts per cycle per second (N0 watts per cps

for a single-sided spectrum). The signal output is

SSout = [ X(f) M(f) exp (j2rfto IM(v)12 dv (23)

from the Schwarz inequality for two complex quantities A and B:

l•".A(x) B(x) dx 2,-4 JA(y)1'2dy . 'B(z) I2dz

Clearly, in order for the inequality (23) to be an equality, we must have

M(f) = (X(f) exp nj2rfto01 * = X* (f) exp -j2Zwftoh i

or in terms of the impulse response m(t),
mr(t) = x(to - t0 (24)

which was to be proved. When this matched condition exists, Eqs. (22) and (23) combine to give

for the signal-to-noise ratio

Sout 2E a
Nout N '(

where Es is the total signal energy f.o IX(f)2 df. This ratio 2Es/N° is an important factor in

the detectability of any signal.

The output voltage at time tt produced from any filter of impulse response m(t) due to an

input w(t) is given by the convolution

fo0(t) I KOO W(T) m(tt - T) dT

which for the matched condition is, by Eq. (24),

f0 (tt) = K w(T) x(-r - tI + t0) dr (26)

From this last equation, we see that the operation of observing the matched filter output at a

given instant is mathematically equivalent to correlation detection, i.e., a multiplication of the

incoming signal-plus-noise mixture w(t) with a reference copy of the transmitted signal x(t) fol-

lowed by integration over the duration of the product signal. We have already met correlation

operations in connection with Eq. (7), which deals with a complex correlation function. W" will

return to the question of correlation operations shortly.

C. The Ambiguity Function 0 2

This matched filtering or correlation detection operation is optimum if the scattering func-

tion has the form of an impulse located at the origin. If the impulse-like scattering function is
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not at the origin but at the point (T, f), the output is in general diminished, and the filter must be

readjusted by the appropriate frequency offset f and its output observed r seconds later to re-

store the rondition of optimality.

Suppose we plot the signal output power from a matched filter set for such a point non-

fluctuating target at T = 0 and f = 0 as a function of delay and doppler misalignments 7 and f.

The result is the quantity #2(7-, f)called the ambiguity function22,23 (or the uncertainty function,

resolution function, or two-dimensional autocorrelation function). More explicitly, the ambiguity

function 2 (,. f) is defined as simply o/0 (to) 12, the square of the envelope of the output fo(t) of a

matched filter at t = to to an input waveform x(t) that has been misaligned by a lag of 7 seconds

and an upward 3hift in frequency f cycles per second:

(
2

T, f)= '/,(to)
2 (t) X (t + 7) exp[jirft] dt (27)

or, alternatively,

Z (7, f) = :G 101 Q*(q + f) exp [-j2wr] dip , (28)

where X(f) is the Fourier transform of %(t), (i.e., G (f) %M(t)). As before, to is the time

at which one optimally samples the matched filter output if r = 0 and f = 0. The ambiguity func-

tico expresses the ability of a given combination of waveform x(t) and filter matched to it to dis-

criminate targets in range and doppler. Ambiguity functions for some common sorts of wave-

forms are shown in Fig. 10.

The ambiguity function has a number of interesting properties. The width in T at f = 0 is

roughly the reciprocal of W, the bandwidth of the signal; and the width in f at T = 0 is roughly

the reciprocal of the signal duration T. If the energy in the signal and the gain of the matched

filter are normalized so that

If 1 IM~f)12 ,f=

then not only do we find readily from Eq. (27) that the height of the ambiguity surface at the

origin is unity

*2 (0,0) = , (29)

but also that the total volume under the surface is invariant to the form of signal,

,0s 0 2 (,, f) dfdv= 1 
(30)

The "invariance" relation [Eq. (30)) is highly significant. The diagrams in Fig. 10 show the

ambiguity functions of several +--es of waveforms. In all cases the height at the origin is unity

[Eq. (29)), and the volume is also unity [Eq. (30)D; the difference lies in how this volume is dis-

tributed. The first three examples shown concentrate substantially all of the volume in one cen-

tral peak. Thus, lengthening a simple pulse produces a broadening in delay which would be ir-

relevant if only the doppler were being measured [Fig. 10(a)r; or narrowing a simple pulse in

time [Fig. 10(b)] produces a broadening in frequency wbich would be irrelevant if one were meas-

uring range only.
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(a) Long psels (TW 1).
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(C) Swept-requency pulse
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Fig. 10. Ambiguity funt~on of typical gmuslnim beIf pulse wamefone.
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The last two examples in the figure represent deliberate efforts to make both dimensions of

the central peak small. This allows range and doppler resolution to be obtained simultaneously.

In the case of the "large-TW pulse train" (Fig. 10(d) 1. the rest of the volume goes into subsidiary

peaks. For the continuous large-TW waveform or Opseudonoisel waveform [Fig. i0(e)), the

volume in mostly in the "skirts" away from the central peak. A great deal of study has been

given to ways of making these skirts even, so that there are no large subsidiary peaks (e.g.,

Ref. 24).

Signals of the type shown in Figs. 1O(c) through (e) are useful for another reason besides the

availability of simultaneous doppler and range resolution. For a given peak power limitation on

the transmitter, these waveforms allow an increase in signal energy E• by leaving the trans-

mitter on longer, without a sacrifice in range resolution as would be the case with the waveform

in Figs. 9(a) and (b).
In estimating the performance of the various waveforms of Fig. 10 it will be convenient later

on to use the crude approximations given in the right-hand diagrams of Fig. t0. There the volume

in a given peak is assumed to be concentrated uniformly within the half-power contours, and in

the case of the pseudonoise waveform the skirt level is assumed uniform.

D. Interaction of the Signal and the Target in Terms of a and 2

We have now introduced two functions of delay T and doppler f, one being the target scatter-

1mg functior. 9(r, f), a property of the target only, and the othb.r being the ambigutty ttmetlan

* (7, f) which describes the transmitted signal independently of target properties. These have

bee,' ".)usraiei in ,'i'. -'., a U, 1 •- nap.,Jively. We b,1&aU nuw ubtais -mn expression involving

these *•wo quantities that shows how a simple matched filter radar sys em responds to a spread

target. This expression is a convoiution of a and . For the more complicated radar sys-
ter"& that provide optlinum detectability on spread targets other expr essions are obtained, but

they, too, are found to take into acccvunt the target properties only thrmugh the ambiguity func-

tion, and to involve the same convolution of 7 and 2 as we shall see.

Imagine that we have an ensemble of statistically identical targets. With a transmitted sig-

mal Of complex envelope '% (t) emerging from the transmitter, a signal a&(r, f') JC(t) represents

the random complex echo signal returning from the elementary region having a span of delays

lying between re and rl + Ir' seconds, and at the same time having a r nge of doppler frequency

shifts lying between V' am,, V + df' cycles per second. The target scattering function cr(r', f') is

defined a

where the bar represents ;_ X ensemble average, and parameters such as range, antenna gain,

etc., are normalized out s that a,( 1, f') 1AY in terms of the number of e.fective square meters of

cross section per second of range increment per cps of doppler incrermbent. That is, one watt

per square meter of incident power tsx will scatter toward the receivtr [•(71, f') dr'dfl'/4 watts

per steradian of solid angle subten. /d st the target!

tin detm inkqi ihe scattering function soft targets such as clouds of scatteres, 1t is usefui6 to ooidlerLs(i,) to be the average cras section o typical particle times t probability tliat suob a pftlie will fitlfll
the eantition ta" tihe rIae is In the ini 'rvl -' to -e + d-' and the velocity ties In P to P + diP.
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The easiest way to deduce the effect of the spread target on the radar signal is first to divide

the target up into zones having different delays. Suppose we have isolated such a region of the

target containing all points lying within a range of path delays 7' to 7' + dv'. We next imagin.

that the rest of the target is absent and we compute the contribution of this zone to the output of

the matched filter. If those regions within the zone that introduce a frequency offsett lying in

the range fI to fI + df' return an echo s(7', f') •{t), then the envelope of the output from a filter

that is matched to the transmitted waveform (except that the filter is misaligned upward by f in

frequency and the output is observed at t = to + r instead of at t = to) will be

=so(tofl 
tX*(t)G (t + 7'-7) expfj2r(f-f') tj dt I , f- V)

since the signal arrives with a total time offset (r-' - 7) and total frequency offset (fI - f) relative

to the values giving maximum filter output. Use has been made of the relation JABI = !AI fBI
for two complex quantities A and B. The average power [P(7, f)] 7, appearing in the output of

the filter offset by 7 and f due to the entire zone having delay near v'l will then be gotten by

integrating the average of the square of this quantity over all frequency (contributions at differ-

ent frequencies always adding as powe 4, not as voltagg):

M • vf) io°(to)I =-, S...Z(7, 7, f f,) 10(7', f,)12 df

a 0
2

(7i - 7, f - f') f(fO' f) df

As a final step, we add up the contributions due to all range zones of the target. If we assume

that the echoes from different range elements are uncorrelated;* i.e., 18(71,f,) s(71, f,})I = 0

for all r', 4 •', then we can add together the powers returned in the different range intervals to

get .

P(7,,f) Mr. f),.r, d7' R 2 (i. r - f -fV)o(7',f') d,. df' (31)

Thus the power out of the matched filter as a function of the time and frequency offsets in

proportional to the (two-dimensional) convolution of the scattering function with the ambiguity

function.S Equation (31) says that the process of matched filter reception isolates certain areas

t he frequency offset might occur because at the given range there are regions In motion with the appropriate
velocity. On the other hand, a frequency spread of the energy returning from a given rage could just as eMaily
occur as a result of other physical mechanism. For example, at a given range there might be a single fixed
scatterer whose reflectivity is fluctuating rapidly enough to cause the assumed doppler broadening.

MAs noted later at the close of Sec.V-E, it Is conceivable that the signal returning from the target In one cell of
twe e,P plow might be partially coherent with that appeoring In a nearby cell at a later time. In such cam
this step cannot strictly be taken. The whale question of such cell-to-cell coherences remains to be studied In
the radar astronomy context.

I In oder to avoid a weighting popartinnal to the antenna gain pattern, we have Implicitly assumed that the an-
tenui beamwwdh is much greater thnthe Oangle subtended by the target (or equivalently, for targets broader
then the beamwidth, extended targets, that the antenno radiates uniformly throughout a certain solidangie, and
zero elsewhere). Also, It should be added that whenever the filter and transmission are not matched, 92 Is simply
replaced by the slightly more general cros ambiguity function."27
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of the scattering function. The process can be visualized as a process of overlaying the three-
dimensional surface # a(7, f), the ambiguity function of Fig. M0, onto a similar representation of
the scattering function v(,, f) of Fig. 9 (aler providing the appropriate r and f offsets) and then
reading off the total volume under the product of these two functions.

Let us now investigate the various forms of receivers that are actually used in radar astron-
omy work where adequate signal-to-noise ratio is always a problem. As detailed by R. Price in
the companion report,1 in order to build up the signal-to-noise ratio, one usually builds a re-
ceiver structure that goes beyond simple matched filtering or simple correlation detection as
just discussed in Sec. IV-B.

The matched filter with a sampling of the output voltage at to is appropriate only for a
nonfluctuating point target for which one knows target delay - to within a fraction of an RF cycle.
Since this means a fraction of a wavelength, in practice, carrier phase is almost always unknown,
and so one samples instead the envelope at t0 . Figure 4i(a) shows two alternate versions of the
matched filter for known RF phase, the matched filter operation itself (as we have described it
In Sec. IV-B), and the correlation detection equivlent (Eq. 24 The watehsd like end q

lent correlation detector of Fig. 44MW are the receivers of Ing. ttta) suttably modified for d1f-
mality when VF phase is unknown. In the case of the matched filter shown on the left, the en-
velope of the output is sampled, and in the correlation detector shown at the right, the envelope
of the (complex) cross correlation of arriving signal w(t) and transmimion x(t) is observed,
rather than only the real part as in Eq. (26). The diistinction will be discussed further in the next

section.
For uniformity with the other more complicated detectors which we are about to discuss,

Fig. II (b) shows the square of the envelope being sampled, not the envelope itself. For a point
nonfluctuating target, the output power signal-to-noise ratio ts (E5 /No)Z as compared with
2(Es/No) available when carrier phase is known exactly. In terms of required signal energy
Es, the lack of phase knowledge costs 3 db. For a more general form of target, the output power

signal-to-noise is ". }2
p W(,r, f) = Const X No 0 - r, f - f') , (r', f') dr' . (32)

in radar astronomy experiments the duration T of the transmission is usually very long
compared to the received signal fluctuation period i/B, so that one must regard the target at,
being a point fluctuating target (spread in frequency f), so that its scattering function is

o(.r, f) z(/0) a (.r- ')

where 6 is the unit impulse. (The condition T >> I/B is often unavoidable irrespective of the
target properties simply because of limits on the achievable frequency stability of the transmit-

ting and receiving conversion stages.) The usual form of receiver is then the one shown in
Fig. 11(c)ý where the received signal w(t) is premultiplied or "weighted" by a replica of the trans-
mission x(t) to undo any phase modulation imposed at the transmitter and to accentuate those
portions of the received signal w(t) during which one expects greater amplitude; the weighting
is followed by the familiar predetection filtering, rectification, and postdetection integration
operations. In the general theory of signal-to-noise ratio optimization developed by Pricei and
summarized here, such a receiver is called a weighted radiometer because the three operations
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following the weighting are precisely thosm used in a radiometer such as is employed in radio

astronomy to develop maximum signal-to-noise ratio from an incoherent narrow-band source

such as the hydrogen line. For maximum signal-to-noise ratiot it turns out that the predetec-

tion filter characteristic H(f) must be chosen to match the power profile of the line, or in our

context,

JH(f) 12 = Const X a(f) (33)

For the general case of a target that may or may not be spread in both T and f, and for an ar-

bitrary H(f), the following expression gives the output signal-to-noise ratio for the weighted

radiometer

.0 2

(rf)= Const X J H(fV - f)12 df' 55 (r -r1, fV - ft ) uoil',f") dr d" (4

(As before, 7 and f are the offsets inserted in the receiver processing, usually in the timing

and frequency shift of the weighting operation.) That is, the convolution appearing in Eqs. (3U)

and (32) is itself smoothed in turn frequency-wise by the squared magnitude of the predetection

filter frequency characteristic H.

The theory developed in Ref. I goes on to say that if the target is significantly spread not

only in frequency f but also in delay r (deep fluctuating target), then the optimum receiver is

the rake radiometer of Fig. 11(d), which is obtained, plausibly enough, by iterating the weighted

radiometer of Fig. It (c) at a number of delays successively spaced by a small 8, the total range

of delays being large enough to at least span L, the duration in r of the target scattering func-

tion. For signal-to-noise ratio maximization, it will turn out that the frequency functions of the

predetection filters Hi fW = HMr, f) (where t. = some r o + i8-) must obey the condition

IH('r f) 12 = Const X o(T,f) (35)

That is, the filter squared magnitudes, when read off along the succession of delay-line taps

(and according to frequency at a given tap) must reproduce the target scattering function. For

the more general case of arbitrary H(,, f), the following expression gives the output signal-to-

noise ratio for the rake radiometer:

SConst x [ r5 IH(rl'-, f'_f)ld2 d7c' 1 2 (lT"--7', f'--f") 010", f") dt"hlf" . (36)

That is, the original convolution of Eq. (31) undergoes a two-dimensional convolution with the

predetection filter power-vs-frequency functions read off in r.

Thus we see that for the entire class of receivers considered to be of value from the signal-

to-noise ratio point of view, the convolution Eq. (31) is the central relationship. To see how the

two-dimensional convolution operation works out in practice, consider convolving the scattering

functions of Fig. 9 with the ambiguity functions of Fig. 10. In probing a target spread in both

tAs is pointed nut in Ref.1, the results quoted here on the form of receiverthat is optimum are strictly true only
for the reasonable condition that the receiver input signal-to-noise ratio is smaller than unity In a certain sense.
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range and doppler (deep fluctuating target), such as Fig. 9(e) or 9(f), one can resolve the detailed

structure of the a(i-, f) surface only by using an ambiguity function whose central peak (with lateral

dimensions of I/W by I/T) is sufficiently narrow. As we have seen earlier, such studies of hard

targets are very interesting because of the simple correspondence between places on the target

and places in the 7% f plane for the received signal.

However, we are often not interested in measuring the whole scattering function itself but

rather certain simpler quantities derivable from it. Two such quantities are the power impulse

response a(7r) and the echo power spectrum a(f). These quantities were briefly alluded to in

Secs. U-C and II-D. respectively. (Two further quantities, the echo correlation function and the

spaced-frequency correlation function, are described in the next section.) If we are observing a

spherical body with uniform surface properties, any one of these four quantities is sufficient to

specify the angular spectrum ao(rp) of the surface (given the diameter and rotation vector), so a

measurement of the entire scattering function is not very interesting for such uniform targets.

For targets with nonuniform surfaces, measurement of the scattering function is important.

Moreover, it is clear that the design of the optimum detectors of Ref. i demands as complete a

knowledge of the scattering function as can be had.

The quantity a(7), the power impulse response of the target, is a plot of power as a function

of range only, and could be obtained in practice by using simple TW "- I pulses [Fig. 9(b)] of such

a wide bandwidth as to resolve all the interesting variations with T of the function air, f) and also

"exceed greatly its frequency width B. Thus fr(T) is defined as follows:

()= ar(T, f) df ;(37)

and the average power as a function of range for a short pulset will be

P(T)= 2 *2(Tr - T', 0) a(I") dT' , (38)

the r-convolution of a(r) with the f = 0 profile of the pulse ambiguity function. According to

Eq. (27), this profile, in turn, is the magnitude of the time autocorrelation of the pulse complex

envelope. For a uniform sphere, the power impulse response is given by Eq. (13), discussed

earlier.

Similarly, the echo power spectrum a(f), defined as

o'(f) = a(r, f) df (39)

can be obtained by using a simple TW = I waveform of such a long duration T [Fig. 9(a)] as to

resolve all interesting variations with f of the function a(i, f). The average power as a function

of frequency offset for a long transmitted pulse is thus

@2 (0, f - f') a(f') df' , (40)

tOne occasionally encounters the term "modulation los' in the literature on lunar communications techniques
(e.g., Ref.28). This term refers simply to the average received power obtained with the nonzero pulsewidth In
use, relative to that which would result if an indefinitely long pulse of the same energy were used, and observed
on reception at the most favorable delay value.
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the f-convolution of a(f) with the T = 0 profile of the pulse ambiguity function. Equation (28) says

that this profile is the frequency autocorrelation of the spectrum corresponding to the pulse com-

plex envelope. The echo power spectrum of a uniform rough rotating sphere was presented

earlier as Eq. (14).

E. Spaced-Time and Spaced-Fequency Measurements

There is another important way of measuring the distribution of echo power with range and

doppler (scattering function) besides that of sending a signal whose ambiguity function probes

the scattering function itself. This method involves sending two sinusoids spaced by Af in fre-

quency and then cross-correlating (as a function of delay AT) the corresponding received sinus-
oids. That is, one of the two received randomly varying sinusoids is delayed by AT seconds,
readjusted in frequency by the original Af, and then the two are multiplied together and inte-

grated. (Variations at the carrier rate are Ignored, as was done with the ambiguity function.)

As an engineering matter the measurement would probably be done most conveniently by passing

the two received functions (with one delayed by Ar) into a multiplying device and then measuring

the amplitude and phase of the difference-frequency sinusoid produced at frequency Af, as will

be discussed in the next section.

The complex quantity derived in this way, t{(Af, AT), the two-frequency correlation function,

can be shown to be the inverse Fourier transform of a(T, f), the target scattering function2 9

(Af ) =: Y: a(r, f) exp{[jZiAfT + &Tf)] dr dl (41)

or, using the notation introduced in Sec. fl-A, d(Af, Ar) arT, f).

Setting Al = 0 we find as the echo correlation function 6(0, •r), which we abbreviate (CAr),

a(AT) -: a(f) , (42)

the inverse Fourier transform of the received frequency spectrum a(f) obtained when a sinusoid

is transmitted [Eq. (39)], just as one would expect. Similarly, setting AT = 0 we find that the

"spaced-frequency correlation function R(Af, 0) E dt(Af) is

Ot(Af) ==O air) , (43)

where a(•) is given by Eq. (37). So, referring back to Fig. 9, we expect the maximum AT value

for which correlation of the fluctuations is still preserved to be roughly I/B, the reciprocal of

the doppler smear. Also, the maximum frequency separation Af for which the fluctuations are

still correlated is roughly I/L, the reciprocal of the multipath delay smear.

The three quantities ar{), a•f), and a(r, f) are all real and positive (since they are powers),

but are not, in general, even functions. Therefore, their inverse transforms, S(af), dt(AT)

and dt(Af, Ar), respectively, will be even functions, but will not, in general, be real. However,

if one of the a's happens to be even [as would be the case for o{f) of a rotating uniform sphere]

then the corresponding transform 41 will be real.

Figure 12 presents a summary of the interrelations between the scattering function a(r, f),

the two-frequency correlation function dt(Af, Ar), and the four derived quantities a(ir, a(f), dt(Af)

and fi(Ar). The method of measuring each of these will be summarized presently (in Table I).

The reader may wonder at this point why the scattering function has been singled out as the

basic quantity and all the others (including the two-frequency correlation function) spoken of as

37



ViTP)I' I

TANSET SITTERIN6 FUNCTION

Ct

ECHO POWER SPECTRUM POWER IMPULSE RESPONSE L"

f

I FOURIER TRANSFORM FOURIER TRANSFORM FOURIER TRANSFORM

AT

H0 Il(AL AT) 0

ECHO ;000A)8PACED-FREOUENCY
CORRELATION FUNCTION 000 CORRELATION FUNCTION

/L I/le
At

TWO-FREQUENCY CORRELATION FUNCTION
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TABLE I

Futionm Method of Meaurement

Power Impulse reqspn e(r) Average th+ powe vs ange (r) of a lIp number
of short pulses.

Echo powe spectrum V(f) Spectral analysis of a long record of the signal
received when a sinusold is trasmItted.

Scattering function a(.rf) Transmit repeatedly a waveform x(t) with durationT equal to the reciprocal of the desired frequesncy,
resolution, and with a hendidt W equal to the
reciprocal of the desied wig reeolution. Atth

receiver, either (1) build a filter matched to x(t)
and observe overage envelope squared of the out-
put at desired values of delay and frequency offsets
f and r, or (2) use th correlaon detection equiv-
alent; i.e., multiply the incoming signal by a rep-
Ilica of the trenIssan x(t), except that the rqlIca
isoffsetby t indelayandf+fd in frequecy. The
product is Integrated (in a bandm filter tuned to
fd) over the orriving sinal duation (4), and the
mean quare of the envelope of all such Integrations
is determined. Ibpeat far other t and f settings
over the ranged of- and f values covered by the
target.

Two-frequency correlation Transmit two sine waves of known qsocing Af. Arrange
function Q(Af •') to receive the two sinusoids es,.mtely; insert a do-
(a complex quantity) lay AT in one, and Imea average amplitudend

phase of the difeec-frequency tone (at frequency
Al)s genratd by passing the two Into a mixer(mul-
tiplier). Itepeat for other values of Al and Ai.
(Phase is measured relative to that which would result
from a point target obiemd with the Af in use.) The
averaging of phawe nd amplitude of the difference-
frequency tone is done by paiing the mixer output
into a narrow-bend filter tuned to Af.

Spaced frequency correlation Some as above except use zero relative delay Ar.
function Ot(Al) (complex)

Echo correlation function EI(Ar) Transmit a single sinusoid. PaM received signal into
(complex) one input of mixer and also into the other mixer

input, but with a delay of At and a frequency off-
set of soene fd" Examine average amplitude and
phase of mixer output at fd"
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being derivative from it. Measurement of the entire target scattering function a(r, f) itself [or
equivalently, *(Af, AT)] may not be very interesting in some circumstances (notably where the

target is uniform). However, by starting our presentation with this basic quantity and then dis-

cussing the five derived functions, a more unified presentation has been possible. And more

important, as we have seen from our earlier discussion of hard targets, features in the scattering

function o may be associated directly with physical features on the object; this direct connection

is not available with the correlation function f.

However, in certain circumstances, the two-frequency method leading to 6 might be pre-

ferable; the scattering function can then be obtained by Fourier transformation. The choice of

method of observation depends on the characteristics of the transmitter (e.g., how it is limited

in power and amplitude form factor of the exciting signal) and receiver signal processing equip-

ment (e.g., how many variables of what fluctuation rate can be operated upon simultaneously).

F. Some Equipment Problems

It is now time to deal in more explicit detail with methods of implementing some of the op-

erations we have discussed. In radar astronomy practice, the choice between matched filtering

and the equivalent correlation detection is usually decided in favor of the latter. For certain

simple waveforms like a single square pulse it often pays to synthesize a filter having approxi-

mately the desired response.?0 However, for waveforms with large time-bandwidth products,

only rarely3t1 3 2 does it pay to synthesize a filter with such a response in preference to simply

generating the waveform and using it in a correlation device.

So at this point we will focus our attention on the practical problems of doing the cross-

correlation operation, with particular attention to the implications of the statement that the de-

sired cross-correlation function is sometimes a complex quantity. We have met the complex

correlation function of signals at spaced antennas (Z) and at spaced frequencies (6); we shall

presently discuss a similar correlation function in connection with polarimetric observations.

First we must explain the operation depicted in Fig. 11(b). It is well known that when the

target is a point nonfluctuating target and carrier phase is unknown, detectability is maximized

by observing the envelope of the (complex) cross correlation of w(t), the incoming signal, and

the transmission x(t). A straight multiplication of w(t) and x(t) followed by integration will pro-

duce a number fo(tI) of Eq. (26) which is the real part of the correlation, and so will the matched

filtering-plus-sampling operation. But the desired envelope 11o(ty) = f 0(t1 ) is the square

root of the sum of squares of this quantity fo(tl) = Re {o0(tl )) and its Hilbert transform,

Im 4Fo(t 1 )), and we have no way of observing anything but the former for the schemes described

in Fig. II(a). However, as the reader may recall from a statement made in the introduction to

this report, if we can somehow contrive to make the correlator output f0 (t1 ) a bandpass function,

then Im (jo(tl)) is observable as the quadrature component of this output. And this is easily done

by frequency-offsetting either w(t) or x(t) by an amount fd' doing the integration in a narrow band-

pass filter tuned to fd' instead of the low-pass filter implied by the integral sign, and finally ex-

amining the in-phase and quadrature components of the fd tone appearing at filter output at time

t1 . The in-phase and quadrature components are Re {ft(ti)) and Imn (o(tl)), respectively, and

the desired 4(t1l) I is of course the envelope of the tone observed at t1 .

Such a device is called a bandpass correlator,33 and is not only capable of providing the

correlation function, its Hilbert transform and its envelope, but in also much simpler to build

than the straight correlator indicated at the right in Fig. II(a), for which the integrator is a
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low-pass rather than bandpass filter. The true correlator requires an accurate multiplier of

wide dynamic range and low zero-drift, and the integrator (low-pass filter) must be built with

small DC zero drift. With the bandpass correlator the multiplier can be such a simple element

as a mixer tube biased to minimize undesired intermodulation products at frequency fd' and the

integrator can be any form of narrow-band element, for example, a quartz crystal filter.

As for the matched filter equivalent shown at the left in Fig. II(b), the observation of the

envelope at tI is done by building the filter at bandpass (and without a frequency offset), and

observing the envelope of the output time function in the neighborhood of t1 .

The envelope detection that follows either the bandpass correlator or matched filter can be

performed by using the usual combination of diode and RC circuit to follow the crests of the si-

nusoidal tone. At high output signal-to-noise ratios this registers the envelope exactly.

The correlation function expressions presented in this report have involved infinite time
averages, an obviously academic restriction. In actual practice, not only is the duration of the

experiment finite, but the phenomenon being observed may not persist for very long. Moreover,

lack of complete equipment phase stability over a long period may make it difficult to separate

the real and imaginary parts of the correlator output by in-phase and quadrature-phase detection

over more than just a local portion of the experiment. That is, the integrating filter can be no

narrower than the reciprocal of the stability time of the conversion equipment.

The effect of noninfinite integration time is to introduce noise of two kinds into the correlator

output. The additive noise that is picked up by the receiving antenna and also generated in the

receiver front end will not be integrated out completely. Also, since the processes being cross-

correlated are noise-like fluctuations (usually gaussian), the output resulting from a noninfinite

integration time will not converge to the true value. The fluctuation about the true value due to

finite -integration time is classed as self-noise, a term describing any fluctuation components in

the output that do not go to zero as the additive noise is removed. The effect of finite-time in-

tegration in bandpass correlators using filters of arbitrary shape has been discussed in Ref. 33.

Often the integration time provided by the methodology just outlined is nrt enough to produce

an adequately high output signal-to-noise ratio. One must then resort to postdetection integra-

tion; i. e., integration of the output of the bandpass correlator after envelope detection (which of

course destroys the resolution into in-phase and quadrature components). Figure II(c) shows

how in the weighted radiometer the detectability of a point fluctuating target is maximized by in

effect following a bandpass correlator (with integration time equal to the fluctuation period i/B

of the target) with a postdetection integration of the squared envelope.

Often it is desirable to use a linear envelope detector rather than a square-law envelope

detector in systems like the weighted radiometer. The only effect of this is a small reduction

of about 0.2db in the postdetection output signal-to-noise ratio.3 4

Another artifice that is sometimes resorted to in practice, and one that has more serious

consequences, is the cross correlation of the envelopes of two signals instead of the signals

themselves. This has been done, for example, with interferometry because of the difficulty of

transmitting the two signals to the multiplier point with the phase relations still 1.,eserved. If

the two signals are gaussian and S (r) is the complex cross-correlation function (normalized to

the product of the two powers), then the (real) cross-correlation function of the two envelopes

9ENV is a function of the envelope of S only
3 5
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( = Conat X [ZE(ISI) - (i -IS I?) K(ISI)I= Const x s I2  + lII 6 I

where E and K are ellipLic integrals. Since SI , 1, iPENV always differs from IS(r} I2 by less

than 6 percent. However, only the magnitude of the cosnplex correlation function is preserved,

and also there is clearly a serious loss in signal-to-noise ratio whenever such a nonlinear oper-

ation as envelope detection is carried out on a weak signal mixed with noise. Specifically, if the

signal-to-noise ratio p of one member of the pair is less than unity, then after the envelope de-

tection the signal-to-noise ratio of that member will be p2. This is the well-known weak-signal-

suppression effect (see, e.g., Davenport and Root 3 6 ).

The methods of instrumenting measurements of ojr, f) and related quantities are summarized

in Table I, which supplements Fig. 1 2 by giving a short recipe for the measurement of the target

scattering function a(r, f) and the five derived quantities 6(Af, &7-), El(af), 4t(A}), a(f) and u(T).

G. Interferometry

In Sec. U-D it was pointed out that by computing Z (Ct, Ar), the cross correlation of spaced

antenna outputs, it was possible to determine the strip-integrated brightness distribution, or

what is equivalent to it for a uniform sphere, the echo power spectrum. Moreover, it was shown

that measurements on ground pattern velocity could be made by determining the value of AT giving

maximum cross correlation for a given spacing cT. The ground plane was assumed to be perpen-

dicular to the line of sight.

We now touch briefly on some of the methodology involved in using radio interferometers to

study the received signal. The value of radar interferometric measurements for radar astronomy

was first pointed out by Manasse,37 who suggested interferometric methods of studying surface

roughness and rotation vector. Here we will mention a few of the characteristics of interferom-

eters and defer until Sec. V-D and V-F a discussion of the specific experiments proposed by

Manasse.

In actually carrying out interferometer measurements the stations will not, in general, lie

on the plane perpendicular to the line of sight; therefore, an obvious projective correction is

necessary. As lonj as the station separation as projected along the line of sight is not an appr?-

ciable fraction of the wavelength in space of the modulation bandwidth, the results of Sec. II-D

still apply. (That is, the attempted range resolution of the modulation must not exceed the range

difference of the two stations.) This condition will be fulfilled until radar range resolution of,

say, several tens of miles or less is attempted. Let us then refer to CT as the actual physical

baseline as projected on this perpendicular plane.

The fact that the baseline orientation changes as the earth rotates can be used to advantage.

In Sec. HI-D it was pointed out that the behavior of the correlation Z It interestingly different

when the baseline X is chosen to lie in different directions. In practice, provided opportunities

to observe are sufficiently frequent, it may not be necessary to build more than a two-station

interferometer since different directions and magnitudes of c become available as the earth

presents different aspects.

The directivity pattern ot any antenna system is, of course, the Fourier transform of its

aperture distribution (as we have seen in regarding the distant target as a transmitting antenna).

By reciprocity, the same thing holds true for the interferometer, as for any receiving antenna

the outputs of whose elements are combined coherently. Thus, it is easy to visualize why the

interferometer output I Z I drops as the spacing in wavelengths increases by more than R/D,
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where R is the target range and D is the diameter of the central patch of the brightness distri-

bution in which most of the reflected power is concentrated. The power will drop as the width

of the antenna lobe becomes narrower than D because of phase cancellation (contributions from

alternate lobes combine in antiphase).

Another fact that can be easily visualized using this Fourier transform way of looking at the

directivity pattern is that for planetary radar astronomy experiments we can neglect the finite

size of the individual antennas and regard them as point receivers, a condition we have been as-

suming throughout Secs. 11-A and II-D. The planets subtend angles of about one minute of arc at

most, and until the individual elements making up the interferometer attain this order of beam-

width the nonzero size can be neglected. The sun and moon, with their one-half degree angular

widths, do require antenna widths to be taken into account.

A unified discussion, using the Fourier transform picture, of the effects of nonzero element

size is given in papers by Bracewell, 3 8 ' 3 9 whose treatment also allows for such variations in

realization as multielement interferometers and "crosses," phase-switching techniques, and the

fact that onme may not be measuring Z (both in-phase and quadrature components) but only Re (Z).

In practice, the complex quantity Z would appear as a difference-frequency sinusoid (of

frequency fd} generated by offsetting the local oscillator injections of one of the two receivers by

fd; the in-phase and quadrature components of this sine wave then correspond to Re (Z) and

Lm (Z). Gehrels and Parsons 4 0 have described the construction and use of an interferometer

which is associated with the Millstone Hill radar and which has a sufficiently long baseline for

planetary studies. The necessary phase identity of the two local oscillator injections is obtained

by using a special line-of-sight radio link between stations.

H. Polarimetry

The object of a radar experiment using polarimetry will usually be to measure total Faraday

rotation X = X0 + Ax of a soft ionized target [x0 is the polarization orientation in the absence of

the ionization and Ax is given by Eq. (Z0)] or the degree of polarization m of the echo from a hard

target, or perhaps both for a hard target echo passing through an ionized region. As mentioned

in Sec. H-E, there are several schemes in use for specifying the polarization of an electromag-

netic signal, for example the Stokes vector, Eq. (16). For radar astronomy the problem of meas-

uring any or all o the four parameters of the Stokes vector does not differ appreciably from the

radio astronomy case, and there is a fairly large literature available om such radio polarimetry

instrumentation. The reader is therefore referred to the survey paper by Cohen,0 which dis-

cusses both theory and technique in some detail.

For example, if the receiving antenna structure consists of two elements responding to left-

circular and right-circular polarization, the four Stokes parameters are given by

x - LIZ> + (I'VRI> 2 ' PL + PR

Qu 2 Re<VL'V•> :2A cosy

u a 2 Im LCV1 = ZA sin .

V - <I'VLIz>(- <I-VRIZ> a PL- PR (44)
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The two quantities appearing in the equations for I and V are the average powers of the two

antenna outputs. The quantity <-V'L',/) is the cross correlation of the two outputs, and can be

obtained in practice by passing the two auitenna outputs into the two inputs of a mixer after first

frequency-offsetting one of the two by fd; the output tone at frequency fd in then averaged. This

tone will have an average amplitude and phase denoted above by A and y, respectively. In prac-

tice the averaging interval would not be infinite as implied by the abbreviation < >, partly be-

cause it may be desirable to study the slow time variations in the Stokes vector, in particular

the quantities Q and U which place in evidence the angle X. If the degree of polarization m is

the only Interesting quantity and one is not trying in addition to follow slow variations of X in

Fig. 7, then the averaging interval can be extended.

Note from Eq. (18) that the degree of polarization m is not given simply by (PL - PR)/

(PL + P unless one can be sure that the right- and left-hand received signals are uncorrelated

so that Q = U = 0. In practical terms this means that in order to determine the depolarization

introduced by a target, one must use a true polarimeter which preserves the relative phases of

the two received signals, rather than working only with the powers of the two received compo-

nent signals. The expression (PL - PR(PL + PR) gives a lower bound on m.

V. MEASURING QUANTITIES OF ASTIRONOMICAL INTEREST

It is time now to take the material on the effects of target properties on the electromagnetic

signal (Secs. U and III) and turn the question around to inquire what astronomically interesting

target properties can be deduced from the received echo.

A. Ranging

Ti. measurement of interplanetary distances and their various order time derivatives is,

of course, a central astronomical problem. The basic yardstick of the solar system is the

Astronomical Unit (a. u.) - the mean radius of the earth's orbit - whose accuracy has been sub-

ject to steady refinement by optical means over a period of several centuries. Knowledge of the

position of bodies in the solar system to one part in at least 106 is presently possible, so long

as the results are expressed in terms of the a. u. (At present 10- represents the accuracy with

which free-space light velocity is known.) However, for some years various attempted measure-

ments at this distance spread over a range of about a part in 10 . The extent of this disagree-

ment is evident from Fig. 13, which lists various suggested values of the a. u. The difficulty lies

partly in the fact that all previous nonradar methods of fixing the size of the a. u. depended on

measurements of angle, and thus, by virtue of the short baseline obtainable on the earth and be-

cause of atmospheric refraction, were likely to be permanently limited to about this order of

precision. Recently, measurement of the orbit of a deep space probe with a radar repeater

aboard has been employed4 1 (see the value labeled "Pioneer V" in Fig. 13). Figure 13 also

shows the results of several Venus radar experiments. The experiments labeled with an aster-

ink used the time of flight to deduce the a. u. ; those labeled with a dagger employed doppler shift

(next section). Recent radar range measurements 4 2 '4 3 ,44,45 of the a. u. agree within several

parts in 10g.

As radar sensitivity improves, more subtle things are being sought in interplanetary distance

measurements. In addition to providing refinement of the single quantity embodied in the a. u.,

it is possible to use radar data to refine the orbital elements of various bodies 46,47,48 so that

previously undiscernible effects may be measured, for example the effect of higher order
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perturbations due to other planets. Among the interesting things to look for in the future are the

relativistic perihelion motion of an eccentric-orbit planet such as Mars, the depth below the cloud

eover at Venus' reflecting surface, and other quantities. If a given planet has an appreciably

dense ionosphere, then the retardation effects discussed in Sec. rn-B will impair the accurate

measurement of range, unless one has some knowledge of the target ionosphere density.

From the discussion in Sec. IV-D, it is clear that to measure the range, one uses a waveform,

with as great a bandwidth W as possible. The accuracy of the measurement depends on W and

the signal-to-noise ratio as will be discussed quantitatively in Sec. VI-B.

B. Velocity

Precise measurements of the velocity 0x a planet can also serve to provide a determination
45

of the a. u. and this technique was recently employed on Venus. The accuracy goes up with the

ratio of total relative velocity between earth and target and the frequency resolution of the sys-

tern. A alight disadvantage of this method ever direct rangtimg *0b the requt. veloctty a-

curacy increases when the body is closest to the earth (since the total relative velocity is a mini-

mtum at this time) and yet this may be the only time when the object is detectable.

Clearly, to measure the velocity most accurately one uses a waveform with as great a dura-

tion T as possible. The accuracy of the measurement depends an T and signal-to-noise ratio,

as will be discussed in Sec. VI-B.

C. Planetary Adus

Radar measurement of the radius of a target planet or satellite Is not of pressing interest,

since usually this quantity is already known optically. To measure target radius fram the total

extent at .(r) or @W is promlsing. since the enersy returned from the limb will be very small

because oa a grazing incidence of the line at eight from the radar, and will thus usually be

buried in noise.

It is worthwhile to recall, however, that a measurement of the target scattering function of

a hard target gives information on shape and size. As Fig. 4(b) shows, with proper normalisuaton

of the frequency axis, nonzero values at the scattering function in the r, f plane occupy a region

that reproduces the shape of the target body, as viewed from the side. Therefore the rladus of

a spherical planet can be determined from the high signl-to-noise ratio portions of the observed

scattering function (independently of knowledge of rotation vector and thus doppler width) by fitting

an ellipse to the perimeter of observed nonzero values of received power in the r, f plane and read-

ing off the length of the r semiaxis.

In what follows, we shall assume that the planetary radius a is one of the known quantities.

D. ftdar Angular Spectrum of a Uniform Hard Target

The link between the detailed character at a portion of the rough surface at the target and the

received signal Is the radar angular power spectrum %o of that portion. As we saw in Sec. U-A,

the angular power spectrum expresses the statistical character of the corruptions of phase, am-

plitude and vector direction of the electromagnetic signal returning from a plane region near to

the surface ot the target on which a plane wave is incident. One ot the most useful types ot ob-

servation of hard targets to be made by radar is the determination at the angular power spectrum

for different surface regions.
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The astronomical sil•ificance ot radar information on the target surface is obvious. indeed,
it is interesting to note how significant the radar observations on the moon have turned out to be

considering the moon's accessibility to optical observation.

IN the spherical surface can be assumed uniform |i.e., o(q) the same everywbere], then de-

termination ot ao is straightforward. A narrow-pulse experiment to determine the power impulse

response a(?) fEq. (37)) gives %(4p) directly by the inverse of Eq. (13),

0 0 --0( coo ) (45)0 fae c

In practice, as a result of nonzero pulse width one will actually observe not w(r) but P(T) of

Eq. (38).

This short-pulse method of determining &(r) is probably the simplest method of all. A

mathematically almost equivalent method is to measure the correlation between sinusoids spaced

by Af as a function at Af. This gives t(Af), which then can be Fourier transformed to give wrb),

provided one has been able to measure the complex A and not simply the magnitude.

Obviously or0(97) can also be obtained from a measurement of the echo power spectrum o(f)

Eq. (39). since the two are uniquely related by the integral equation (14) (where the projected

rotation speed 0 cosa is known). Determination of ar(f) is accomplished by determining P(f)

[Eq. (40)J from the received version of a long pulse of sine wave either by direct spectral analy-

sis or by determination of dt(Av), the echo correlation function, followed by Fourier transforma-

tion. Taking this data on wf is simple enough, but the Inversion of (t4) is more tedious than

solving Eq. (45) for the short-pulse method. The inversion to Eq. (t4) is49

.. Lcoo,0 it _o.. ! ÷r0 ia~~•/Z_(€v/z)Z 2fOceaT

Izto ~ 2f a ooo1 .6

x L a/ ce.)J df .(46)

It is worth pointing aot that if the target is a uniform sphere, all four of these measure-

ments ('). ef), wMO ) and O(A7)l are mutually redundant. That Is, o one ot them suffces
(if a and 0 coea are known) to uniquely specify the scattering function u(r, f) or, equivalently,

the correlation function Ot(At. Ar). This is clear from the development of Appendix B in which

it is shown that the angular per speatrum, target radius and projected rotation speed com-
pletely define the target scattering function if the sphere is uniform.

A filth method o measuring •o(y) is the atierferometer method 3 7 of correlating the output

at spaced receivers sapanted by disteace t and with relative delay A, a 0 to give Z(Z 0) as in

se. .II-D and FIg. 6(b). V the tarpt is uniform, then the brightnes diestibution P(x. y) of

Pig. 3(b), will be circularly symmtric and Z becomes independent of the orientation of I. That

is. Z(T, 0) . Z(d, 0). Ptepeln the measurement at a number of spacings to get Z(d. 0) will give
the brigtmes di"trfbutim I LPI" - P(x,y) of Eq. (7) and thence aro(r) from Eq. (8). However, one

do"s not need to go to all the trouble of using variable spacing, because the variable Ar is avail-

able. The echo power spectrumn e(f) at a single station is the inverse Fourier transform ot the

echo correlation function dt(Av)° which is recognized to be none other than Z(0, Ar). Thus,

Manasse suggests that measurement of the power spectrum of the signal received at a single
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station gives the desired radar angular spectrum %(tP) through Eq. (46) unless perchance one

does not know the projected rotation rate 0 coo a, which is a scale factor on the bandwidth of
(f), in w h as determination of Z (d, Ast) for a single value of d resolves this scale factor.

That Is, both o() and 0 coo a can be determined by a cross correlation between outputs of two

stations plus an autocorrelation at one of them. The experiment gives, then, information about

surface roughness and rotation vector. We shall say more about measurement of the rotation

vector 6 in Sec. V-F.

The surface roughness of a hard target can also be inferred grossly from measurement of

the degree of polarization m of the returning echo signal, as was mentioned in Sec.U-E. This

type of measurement has been made on Venus.?
0

ln case the body can be regarded as composed partly of an ideally smooth and speoularly

reflecting material and partly of rough material, the amplitude probability density distribution

affords a crude method of deducing the ratio of powers due to the two components?' t For a com-

pletely specular smooth surface, the received sipgnl would not fede at eli b•e - kastain a

conistant value. A rough surface will prodfe a gaussian distribution of voltaffs abouta zero

mean (i.e., a Rayleigh distribution of the envelope). Xn-betweea cases give an intermediate den-

sity distribution.5 This first-order statistic is relatively useless compared to the seonmd-order

quantities we have been discussing, since it is relatively insensitive to the ratio of specular and

scattered power and this ratio would thus be quite difcult to measure accurately with noise

present.

E. Isolating Individual Surface Features

A more realistic model of the surfaces of planets and the moon is achieved by assuming that

they are not uniform in surface properties. Ideally one would like to resolve individual surface

regions and, by studying them at different aspect angles 9, learn something about their specific

nature through determination of their angular spectra vr(; thence, using the theories discussed

in Ref. 3, one could decide on reasonable physical models for the terrain features. Ow might

also study the polarization properties and the amplitude probability distribution of returos from

isolated regions.

The most obvious approach is to point a sufficiently narrow antenna beam at the region in

question, but this requires such enormous antenna gains as to appear unpromising at the moment,

except in the case of the moon or sun, where it is only now becoming possible to resolve to sev-

eral tenths of a target diameter.

Interferometry next suggests itself, but if the interferometer consists of only a pair of an-

tennas with fixed spacing to give the desired resolution, the echoes picked up in the undesired

lobes render the received data too noisy to isolate a given target feature. Two measures are

then possible: (1) the original element spacing d is filled with n - I other equispaced antennas,

whereupon there is only one major lobe every nr/Zd radians instead of every JX/2d, as would be
the case with only two elements; or (2) manW interferometer records are made, using many dif-

ferent spacings, so that the results may be combined to give a Fourier synthesis of the distribu-

tion at power over the target ("aperture synthesis"). The two schemes are roughly equivalent.

However, it is really not necessary to go to all this trouble, at least for hard targets, be-

cause the variables time delay and doppler offset provide isolation of various surface regions,

as was discussed in Sees. 11-C and II-D. This mapping property gives a simple geometrical
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correspondence between points oan the target and regions in the r, f plane at the target bsattering
function v(r, f). That is, energy returning with a certain doppler shift and time delay imposed

an it couild only have cue from certain places an the target surface. To isolate the pair at
points heavily shaded on the surface of Fik. 4(a), me uses a transmitted waveform xtt) at dura-

tion T and bandwidth W such that the ambiguity function #2 has the desired frequency width I/T

and range width I/W. observation of the power received at the appropriate value at delay 'r and

with the proper doppler offset f then ensures the desired isolationt In order to be able to aver-
age a number at readings of power in the r-f cell I/T X t/W in size, the transmission should be

repeated many times (see See. VI-D).
It remains to resolve the twofold aR bigutty between the pair at points in Fig. 4(a). This can

be done by repeating the measuremaA at a time when the apparent rotation axis orients differ-

ently relative to the observer. Or, spaced receivers will allow an interferometer null to be laid

onto one of the two regions unless, fortuitously, te baselin lies perpendicular to the ground
projection at the polar axis.

TU range-doppler mapping technfique has be used by Pettengill in investigating the char-
acter of the lunar surface,8.9 and a preliminary such observation on Venus has been reported

by Smith: 8

So far we have discussed isolation at a fixed roegon on the body by eamining that part at the

return arriving in the neighborhood at fixed values of range r and doppler f. Actually, as the

body rotates, the return associated with a given target feature lies at different places in the

range-doppler plane as time progresses. That is, there will be a characteristic trajectory or

range-doppler hitor�1 through the r-f plane which will be followed by the echoes fron each point

on the target as time progresses. In the spherical case, these trajectories are unambiguous

with one another, unless the polar axis happens to lie perpendicular to the radar line at sight.
whereupon there is still the twofold ambiguity just referred to. In Fig. 14 are sketched the tra-

jectories of several points oan a typical spherical surface.

Knowing the range-doppler history at a given point an the target, one can process returns

taken at different times during a rotation period and build up at least a partial picture ot ro(f )

the radar reflectivtty as a function at incidence angle. It should be possible also to use this

correspondence to build up the signal-to-noise ratio and also the degree at range-doppler reso-

lution (i.e., the fineness of the "resolution cells" of the range-doppler map). Roughly speaking,
both these quantities increase with increased observing time on a given return. An ingenious

ground-mapping radar using just these range-doppler histories has been built by Cutrona, at &.
Because there is one trajectory for each at many thousands of observed target points, techniques

of parallel processing of thousands at hypotheses were necessary in this equipment. Two-

dimensional optical methods were chosen and developed to a high degree. This sort at parallel

processing warrants much further investigation for radar astroncmical mapping and also for

scne of the other less elaborate signal processing procedures we have discussed.

The possibility that the echo in one range-doppler cell will be correlated with that in another

cell after a suitable time delay (and possibly a frequency shift) means that certain previous

tProvided "h target is not ovwesea, as will be discused In Sec.VI-D.
* Expresed In tunas of voltlae, the nulls wae nanwr than thie peal. because Ot pattern has t charcter of the
magnitude of a slnusod. Compleft supprelilon would result tesn only for very mall resolution clls. Wat this re-
quirm large bandwidths, which Itself causes a filling-in of the null, union #te center frequency Is sufficlently high.
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assumptions may ultimately have to be re-examined. As pointed out in the footnote preceding

Eq. (31), the scattering function r(T, f) then no longer suffices to completely specify the echo be-

havior and one must extend the definition of this function to take into account these "cell-to-

cell coherences." Measurement techniques of astronomical interest that take these coherences

into account (as does the ground-mapping radar just referred to) await a systematic investigation.

Likewise, not much is known about the effect on signal detectability of cell-to-Leil cuhererces,

although Kailath 54 has given the problem some attention. It is clear that known syntematic co-

herences in the echo signal should make possible an increase in detectability.

F. Rotation Vector

The quantity ii, indicating the rotation velocity in radians per second, has appeared in

qeveral of the expressions developed in See. IV of this report. We shall now inquire how one

might measure 'he speed n2 and the axial direction. In the case of several planets, notably Venus,

Sis at present largely unknown.

The width of the doppler spectrum constitutes a measure of the projected rotation rate 12 cos a,

where a is the tilt of the axis from perpendicularity with the line of sight. The total over-

all width of the echo power spectrum a(f) gives (2 cos a immediately, since this width is equal to

(4a/cf0 ) 0 cos a. (a is the target radius, f 0 the carrier frequency, and c is propagation veloc-

ity.) However, the outer limits of the echo spectrum are usually buried in noise and it is nec-

essary to infer the spectrum width from the width of the central high-energy portions. But if

this is so, one clearly requires more information than data on the spectrum a(f) alone, since a

given width of the center of the spectral peak could have been caused by either a smooth target

rotating rapidly or a rougher target rotating more slowly.

Information on surface roughness is clearly necessary and there are several ways of getting

it. Manasse 3 7 suggested that a single reading of Z(cT, 0) (the correlation of spaced receiver sig-

nals as a function of spacing at zero delay) would suffice, since for a uniform spherical target,

the shape of Z is determined once a(f) is known, except for a scale factor on width (sie Sec. II-D

and Fig. 6). A simpler method5 5 that does not involve a separate receiving facility is to deter-

mine the roughness, i.e., the angular power spectrum uo(O), from the power impulse response

a(r) by Vq. (45); Eq. (14) then gives the value of the projected rotation rate 11 cos a that corre-

sponds to the observed ao(p) and the observed doppler spectrum a(f).

If the target is nonuniform, the magnitude (3 of the rotation velocity can also be deduced

from periodicities observed in long-term records of echo power.

Cohen56 has pointed out that one should observe a systematic change of the width of the echo

spectrum a(f) as observed over many months because the rotation vector 11 remains fixed in

inertial space as the aspect from which the planet is viewed changes. Cohen shows how, by ob-

serving the "phase angle" and "amplitude" of this quasi-periodic oscillation of spectrum width,

it is possible to infer not only the rotation speed but also to cstablish the tilt of the axis. The

ambiguity in axis direction that remains is that the direction of rotation might be clockwise or

counterclockwise and the axis might be tipped at some angle q or -q to the plane of the orbit.

In his discussion of radar interferometry, Manasse 3 7 suggested a way of resolving the first

of these two ambigdties, i,.un.ly whether it is the left or the right side of the apparent disk of

the target that is approaching the observer. One simply narrows the input filters of the two

spaced receivers so that they both pass only the energy arriving from a strip of the apparent disk



of the target, detunes both input filters together so that this strip lies either in the approaching

side or the receding side, and then steers the interferometer lobe to maximize received power.

The direction of movement of the best position of the lobe can be compared with the direction of

frequency offset to get the sense of rotation.

The sense of rctation can also be obtained from interferometer cxpartrnents in which time

delays A'r are allowed, using the effects described in See. II-D.. As Fig. 6(b) indicates, for a

given receiver spacing d, there is a value of AT that maximizes the correlation Z, rnamely

&y ' ax of Eq. (15). The true velocity vector v of the ground pattern expresses the pr-Jt--te"

target rotation velocity r, cos a, and can be found by making two observations of Tmax using

crossed baselinvs, and solving two equations like Eq. (15)

As a practical examr.ple of the application of thin technique, suppose we have a radar trans-

mitter at point A, and receivers at points A and B (A and B might be Millstone Hill and Lex-

ington, respectively, 20km apart). Suppose the transmission x(t) is a train of phase-coherent

pulses 2 msec in duration occurring every 30 msec, and suppose the planetary target, Venus, is

overhead. We desire to determine the ground diffraction pattern velocity as projected along the

baseline A-T - d. First, the outputs of the two receivers would be gated into the two inputs of a

correlator for 2 msec every 30 msec (with the range of the planet known) to give Z(c 0). Then,

to try different values of AT to find &rmax, the one for which Z (it, AT) is greatest, one would de-

lay one of the correlator inputs by various integral multiples of 30msec. If Venus' rotation

period were 225 days (fl - 4 X 1 07 radians/sec), then the ground pattern speed would be some
15 km/sec, and one would find that for the Lexington-Millstone baseline lying along the direction
of pattern motion, maximum correlation would be obtained for values of AT around 1.3 seconds.

In summary, it appears that by the combined use of several types of radar experiments, it

is possible to determine rotation speed 11 and resolve all the ambiguities in the direction of the

polar axis except whether it is tipped toward the observer or away from him (a positive or

inegative).

G. Ionospheres and Interplanetary ionization

It is reasonable to suppose that above certain levels in planetary atmospheres, recombina-

tion r,,tcs arc low enough and the incident solar flux strong enough that a significant density of

free electrons exists. As discussed in Sec. III, if losses are not excessive, such regions inter-

posed between the earth and u i. flecting hard target can be studied in terms of the time delay

suffered by the echo components, or in terms of the critical frequencies at which the attenuation

changes abruptly, or (if a magnetic field is present) in terms of the accmnulated Faraday rotation.

Equation (19) gives an expression for the round-trip time of flight of a signal reflected from

an object at range R. The second term, the excebs of LizAW of flight over that in vacuo, is seen to

be a measure of ele,.tron density integrate'i along the path, and this quantity appears weighted by

the inverse square of the frequency. This strong frequency dependence suggests several methods

of measuring integrated electron density. The most sensitive would be a pair of separate radar

experiments spaced as widely in frequency as possible, and with the lowest frequency as low as

possibleO The two measurements of time of flight at two such widely spaced frequencies will give,

t But not so low that the signal does not escape the terrestial ionosphere. Critical frequencies of the F2 layer vary
from about 2 to 15 Mcps. If the beam goes through the Ionosphere at an angle X from the zenith, the current value
of critical frequency must be multiplied by sec ) to give the minimum useful frequency.
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by stimultaneou, kiolution of two equations like Eq. (19), both the true range R and the integrated

electron density. (It is assumed that light velocity c and frequency f are known accurately.)
57

A more convenient procedure is to send a modulated signal and then examine the relative

delays of the various sidebands in the received signal, but the limited frequency spread renders

this method less sensitive than two separate experiments at widely sep~trated frequencies. Also,

as we have seen in Secs. IV-D and IV-E, rapid target fluctuations (doppler spread B) or long

multipath duration L, or both, have their effect on the fading of the sideband components.

Reference 57 presents a discussion of a number of single-station experiments of 'li1 ty.-- em-

ploying various forms of modulation.

In either class of experiments, the fraction of the integrated electron density due to the

interplanetary and target regions is not known until the terrestrial component is subtracted out.

The interplanetary component is likely to be much smaller than the terrestrial component. Usu-

ally the terrestrial component is estimated from HF ionograms, but this gives only an approxi-

mate figure because of the variations of electron density with time and place. Briscoe5 has made

the ingenious suggestion that during a planetary radar experiment, or immediately before it or

after it, one can examine the Faraday rotation of incoherent electron scatter returns from a re-

gion well above the F2 maximum of our ionosphere exactly along the planetary radar line of sight.

Knowledge of the earth's magnetic field then gives an accurate figure for the terrestrial compo-

nent by using Eq. (20).

If rendar equipment becomes available that will do accurate ranging over a wide tunable fre-

quency range, planetary ionospheric densities can be studied by noting the critical frequency be-

low which the reflection is from the ionosphere and above which the reflection is from underlying

regions. The transition will evidence itself most easily by a discontinuity in range or in other

parameters, such as effective surface roughness.

H. Magnetic Field

Faraday rotation has been used to deduce the total electron content of the ee'th-moon region
18

using Eq. (20). Similarly, using a radar polarimeter fnr reception of a planetary echo, and sub-

tracting this same near-the-earth component, it is possible to find the integrated field-electron

density prodt'ct B (s) N(s). Then, if the integrated N(s) has been obtained by some alternative

means (see the preceding section), one can say something about the magnetic field between the

vicinity of the earth and the target Unfortunately, it is the product that appears in Eq. (20), so

it is not possible to localize the field contributions even if the location of the election density

contributions is known, unless collateral information of some sort is available. The depolariza-

tion (See. H-E) due to target surface roughness may impede the measurement of total Faraday

rotation (p.

Experiments with tunable radars to discover critical frequencies can provide very interest-

ing information on the magnetic field. Specifically, if the ordinary and extraordinary modes

can be separated either according tn direction of circular polarization or propagation delay

Imes~t then the critical frequencies for the two modes can be isolated. One can then set crude

bounds on the value of the local gyro frequency, which is proportional to the magnetic field in-

tensity.

t The indices of refraction are slightly different, a.; discussed in Ref. 19.
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The final sections of ',Ti; report will be devotedf to various matters relating to erorsion
masking the measusrement d cu-aiod earlier. In pisAming and carrying out physical investigations,
it in Important not only týý 3C Nl to conceive the sort of experiment that will place in evidence
thin variables to be measz -e but 4150 to know what the sources of eotiat are, the expected size
of the errors, and whath.e. the -xperiment concetred Is apt to minimize thems, relative to other
liossible alternative ways of co.nducting the experiment, In the radar aeta mnomy experiments we
have discussed, the noise added into tile echo siguil Is the principal fader influencing measure-
menlt error. V the target itself produces fluctuatilons In the echo. this too is a source at error.

The abstreet moihestogy ot sovting up eupe :-iments to minimize error *n the presence of
ranietal Inihosaces, the solealation at whot so ts at error behavior are a*1'rable, and so forth -
Sme sw te Sodemal at athematical stAtfiftics -.59 Some of the particular teories developed by
Mstistim ha " proved to be e~ftstomly unsful to the comminaleatioms a 4Ar engineer. An
oulaisadding example is tOw theory ot pwf which treats'the srait detection opera-
ftha Mer example. an a teot bewesa4 these two mutually exclusive %ppothosome "the received gig-
spi is noise plus a targat echo."M and 4the reoivsd signal is SAWe aloae. l* tke cs

9e."hi approach is sWied to the Class at t.argets of interest to the radar 44troa4w'z* Asihov
t~ieaftspread in v or f or both) *A such a voy a& to 4serve lp oem it 4 Sted signal and
moolver prosesesu oeossimnd that will lainimis, the prcbcb~ll$oo g 4 P9e1 the pre*-

4.env* ot the object and ot bilsely ecomludlin that, it is present. 'h Ili how good the
4"$9M will he, that is, to what lievel, these probabilities will be wd Aeiai j*1~ system in
use.

There is ais analvgus statistical theory, esiato (see, for example, Hoistrom, 60

which, to apesoble in wegmriments that are intended to measure soanethip& for exanmp'c. a radar
target paramootew. This theory, too, has proved useful to the radar expW&Uh*w since, in those

aseso %W"c aweishnaisl tractable, It provides him with 6 thefom oflusmdedsga
and rmcuvat proesesillg eqquipaent that will mikdnise the error with whisk the desired quantity
Is registered. The theory goes on to say 3W good the measuremsent 15. $0 6a 0* th average
mpea -- tarlasoof In obeavetignt valves w -ol have been Iftth e~eswnooM osai hav bes re-
poated a Lirgo muthber of timaie'q wider stati~tlosal1 identical esadMiMs o pWW spnrapb. Int

this sectiat we shall be Wnerusted i" preseaftV u~prmli 04e4 sower vi
The gist at the statntleal est~illaftm a&poach in as follows. Thes UVOeMe vadraw x'i)

%a reflected fromi the target, w4c of whote prope-tles a we desire 10 measue. The propertyv a
milght Ie a single parameter like rampe -, it might be z paramester net bO lso pair v and f. or
t might be a .notion like o'(r) :,r Orv. f). SOce the true Value Of WI UO s f t Sam 46d-

1d 'by a. . The reflected slg~ul yftl arri". a at th i receiver niw'.d with snojise~t). the reesved

'r '.!+ ' Y("'j + nitiOC CS" WAd x, Ia thi. probat~ilty that the actual olmervsi reasever
tup~k~~ I a wN did .rise !:-ami the twansunsaicu xft) and a v:ertsift a " k,*a Now"&

a v) a + do. tafen, tit. rw ba.-jillty 4cli. actually be knownm to the. receiver if Mhe atatlstis of the

sphudr to 4aetr ocasoee iha 4e . an wh.ý :;ovd be dhlrbhu,4, one and boew ber pbMIN

&N1 n IN* pwpme P MWOf 111e PrVnt CUr v- etmt, w. W'dVli be eOMMt ft dhA eaIý. #1e 101M 4
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noise n(t) are known.) The function of the receiver is to produce an output or an estimate a*

which we would like to have correspond to the actual ao, but which will not, of course, because

of the noise. Ones logical procedure for the receiver to carry Out Is to produce as the output

ga* that value of a for which p(w/a and x) is a maximum.t Such a receiver is called a mxmm

likulihood gulimatinr* In practice, the way it is designed is first to determine analytically what
p(w/a and x) is. Then it often turns out that the expression for this probability can be interpreted

in terms of simple signal proetseng operations on the received signal w(t) that produce an a*C

for which this probabiity ts maximized, when the noise statistics and the form af the traumis-

almsa (t)ae -. After this is done it Is usually possible to go back and perform alterations

ana the Wagemission x(t) to still further Improve the performance.

The maximum-likelihood procedure is not just heuristically plausible; when the a to be

estimated is a parameter or a parameter set, it has been. shown that the a*C based on n independ-

ent such observations approach"s the trues a for ell practical purposes as n -~-(Oconsistentm

and wasysptotically unbiased' estimator), and the varianeO at** soposhos no"e efas &t as
any other possible form of estimator ("asymptotically efficient" estimator). And, what insnmore

important practically, for a finite n (e.g., unity), if the estimator exists giving the theoretical

umidmus achievable error variance (an "efficient" estimator) as calculated from the so-c"le
Cramer-Rao lower bound (on error variance), then that method is a maxlmum-likolihood astima-

¶tor. However, not all maximum-likelihood procedures achieve this lower limit. Indeed, in

some ="&. the Cramer-Rao lower bound in lower than that achievable by any realizable estima-

tor-, for example. asMetimes it is zero.

Suffice it to say that a maiuirnu-likelihood strategy is the most appropriate approach under

most conditions, with an. exception 40 N mentioned in the neod parepsph. It is often mathemati-

caWl tractable and gives estimators that have bess issad by experience to.4* uVegul and are often,

lIn fact, minimum -variance estimators. In measuring the ePWs section of a point so~wtgating
target foe the inimu-variance estimator exists andisaiI3 Aklhoet.

Fn t or estimat r~g the scattering function oii, f), on the other hand, methocle -tWettua the

44 ýi uv~.=llkelihood i-stimatee have recently been found, hut at present it is not known whether

ly. ;~iaceof the ertimate is&as small as is theoretipally achievable. For measurementsoft

;o.ir !uvolved quantities. estimation theory has been little used up to now. For examples, no
*........ a worked out a iarn-kehodestimator at 6. theo vector tai" rotation rate.

"Mhe above discuualcno is appropriate to the often-encounteredl situation in which the voceiver

ýý4vaticm take place In ignorance of any prior knowledge at the relative prdnbMb*h t4W vawlaus

;teof a will occur. Sometimes one does hay, such information in the form of an & rir

* "Isabilhty distribuitoion p(a). Then, instead of having the receiver produce as a I* that i of

lor whisk p(w/a and x) Is maximum, one uses instead p(a) p(w/a and x). Also, one masy

v~.nt to assilm "costs" to estimation errors; for exazople, a tO-mile erro Inat target rang m&i&h

'. considered twice as undesirable in the vicinity of 2000 miles rang as at 2500 miles range. A

vecond modification cai be made to take care of this. The form of estimation procedure that

tekov into &accornt COOL and/or ! priori probabilities is called BUySS estimation, If the cost

T~ W 1e1,k Ismed laese ft rp1Vmeu On sumed as a dhilst from owx smiler seq. in IAm ashl *a can.
of aeuy m m ott )



assignment and the a priori probability p(a) are both sprecd broadly over values ot a, whereas

the function p(w/a and x) is relatively sharply peaked, then the Bayes and maximum-likelihood

procedures Pre equivalent. The reader in referred to Ref. 60 for a discussion of Bayes estima-
tion; we shall assume here that the a priori probability and cost functions are too broad to be a

factor in our measurement procedures. For example, if the reader will refer to Fig. t3, he will

probably agree that previous measurements of the astrononical unit have been so widely spread

as to discourage assigning a peak of a priori probability In a region ot a. u. values any narrower

than several times the probable error of a new measurement.

B. Point Nonfluctuating Targsts

When the target has a scattering function that is much narrower along both the r- and f-axes

than is the ambiguity function of any signal we might be interested in using to ob*erve it, then

we can say that it is a point nonfluctuating target.

The effect of a point nonfluctuating target on the transmission x(t) is simpY to chang its

amplitude in proportion to N/- where a is the target's actual radar cross section, its delay by

the actual round-trip delay 7, and its frequency by f, the actual doppler offset. Maximum-

likelihood estimators for all these quantities have been found and described Ih the literature.

Helatrom,0 among others, gives a reasonably complete treatment of this problem, and we shall

reproduce his results here, stating first the signal processing operations implied by the expres-

sions for the maximum-likelihood estimate, and then giving the variance of the estimate. White

gaussian noise will be assumed.

When 7 and f are known, and one wants to obtain an estimate of received signal amplitude

(which will be proportional to 4i), one forms the quantity

K()" w(t) x(t) dt/Y x 2 (t) d" , (47)

which, according to Sec. IV-B, can be interpreted as the suitably normalized output at time to
of a filter matched to the transmission [i.e., m(t) - x(to - t) as in Eq. (26)J. As one might expect,
the variance is the noise-to-mignal power ratio times the ampUtude squared:

Var ((4w3 I a[(4,)* -(4)0 J2 N?.___(, (48)

where the subscript zero indicates the true value.

It can be shown that Eq. (48) is the minimum achievable variance of estimation of amplitude

(by the Cramer-fto inequality), so no other estimator of %14 can do any better than the matched

filter.

Assuming that the echo is of unknown amplitude and buried in white gaussian noise, the

maximum-likelihood estimate of the parameter pair 7 and f is the value of T and f that

maximizes

i, f) = (t)W(t + r) exp[Zrjft Idt , (49)

which is the square of the envelope at time 7 + to of a filter matched to x(t), except that the filter

is offset by f cycles per second. As in Eq. (27), to is the time at which the filter would have

maximum response if target delay 7 were zero. In practice, one implements Eq. (49) by building
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a set of matched filters, each followed by an envelope squarer, and all having different frequency

offsets with the total frequency span encompassing all reasonable values of f. One then examines

all the outputs over an interval of time large enough to span all likely values of r, and selects

the delay and frequency of the target peak as representing the estimated values 7 * and f *. Since

" and f are continuous variables, strictly speaking there should be a continuum of stagger-tuned

matched-filter-envelope-squarer combinations, and also the continuum of 7-values should be ex-

amined. In practice, of course, the f-spacing and 'r-spacing would be set for some fraction of

the expected rms error (square root of the variance) in f and 7, respectively.

Formulae for the range and doppler error variances as a function of duration T and band-

width W. have been found to be

Var (,*) s (iT* - N o (50)

and

Var (f*) = ( 1
TO0

where

T.= (t-t,)
2 I x(t) z dt/•S".I X (t)jzdt ti 'Y tj x(t)'zdt/S.I x(t)l' dt

w f (f -f,); I X(O I Z/f IXMfI?-df . fi=SfI X(f)I1zdf/S I X(f) I'df

That is, T and W. are the "rmiO duration and bandwidth, respectively. The variance expres-

slom (50) and (51) are valid if three conditions are satisfied: (1) the ambiguity functiun of 4t0),

the transmission, can be approximated near the origin by parabolas along the r- and f-aSss
(2) the axes of symmetry of the ambiguity function lie along the 7- and f-axis; (3) the signal-to-

noise ratio Is suffioiently large that the error arises from random shifts o the peak of the funo-

tion Q near the true value of the parameter, and not from more remote peaks becoming suffi-

ciently large. The first condition is usually met, except for such things as ideally square pulses.

The second condition is met by all the functions of the :Mrt typified in Fig. 10 except for the

"chirp" (swept frequency) waveform, of Fig. 10(c). For waveforms that obey condition (3), the

range error is not a funct4ion of signal duration T"o and the doppler error is not a function of band-

width W 0 . Also, the range error is not increased by ignorance of the velocity, and vice versa.

Expressions (50) and (5i) are seen to Involve only the signal-to-noise ratio Z a/N and the

widths of the ambiguity surface. They express the way in which both the noise and the widths at

the ambiguity function conspire to render the estimate of the true values of f and T imprecise

by causing the maximum of Q in Eq. (49) to shift to the wrong place. Were it not for the noise,

the smearing effect of finite signal bandwidth or duration would be reversible and the position of

the peak could be located to arbitrarily high precision.

One may wonder whether the processor of Eq. (49) gives error variances (Eqs. (SO) and (5i)]

that are the minimum %chievable variances. Manase 6ahas shown that in a point target-gaussian
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noise case like the present one, at large signal-to-noise ratios the estimates are Jointly minimqua-
variance estimates (i.e., Ojointly efficient") so long as the transmission x(t) is a well-behaved
function of each parameter a. An interesting 01te'ion in which the Cramer-Rao lower bocund on
error variance is W~ physically achievable is the ease where the traznsmission is a single reetas-
gular pulse of sinusoid having a duration T. Again, one would expect the ranpeand doppler er..
rors to depenol on pulse width and signal-to-neiso ratios and, If the noise in small enough for
range error to be considerably smaller than pulse width, as before. But when one computes the
the6ratical lower bound fer range error it turns out to he zero for any finite noise level, and this
does not make physical sense. The derivation leading to Eqs. (50) and (5i) is not usaible because
Condition (1) is violated. However, Manasse 6 2 has developed a different, more heuristic appr seac
to find the error variances from a matched filter processor and has found that the error variaces
in this squre-pulse case are

Var (7-e) a (No/2E 5 )? Z Ty~ (508k)

Var Pf) = NW2/E 9 3 /,?Zl . (ma)

When a number n of siradar but athletically independent measurements are added togetter.r
the varianse is decreased b# a factor n. An example at this would be n pulses, each measiu-ing
range or doppler independently. However, in marqy practical circumstances the n measurem~ents
may not be independent. For example. the pulse train iUlustMr_ In Fig. ON() has the phase pre-
served from pulse to pulse, so the doppler resoludtoti available is that appropriate to W*~ton
of the train (as expressed by the frequerypy width of the ambiguity function), rathber than ony /n
times the variance to be obtained with one pulse. The computation. of error variances of range

N. and doppler becomes somewhat complicated when the target has an appreciable- acceleration com-
N ~~ponent. when we desire to measure this acceleration.r. .104iW w amiuityý flr-

faces jWj~ba.4j& sofewed cas i~ii In Fig. i0(c)j. These 6ases are particu~larlyhooalito
hadle when burge-TW signals such. as pulse trains are considered r ather than single pulses.

The best available treatment of these amor complicated cas" es a been given by Kelye63

C. bigetOe qwd only in Wear of Do~Ier

After the point ncdfluctuatlmg target. the next class at radar targeft in order of complvxity
Is that for which there is a spread along either the v-axis or the f-axis (relative to the corme-
spending opread of the signal aznblgfltyftoction), but not both.

For example, with a point flohUeatng target, there is a spread only along the f-axis, .und the
scattering function is v(r, f) -elf) S(r - r') where r' is the range. With such a target thers are
at least four quantities one might be Interesed in estimating: (t) the range r', (2) the curve elf)
to whatever frequency resolution is interesting, (3) the bulk despser shft at the target as a whole,
given the shape wlf apart from the unknown trasslatimn and (4) the width at the doppler spectrum~,
given both the center frequency And the spectral shape wlf apart fro the unknown width factor.

With the classical scalluctuatlng pedt target, the real source of error (other than such things
as oalilhation errors) was the reeie nosae,. represented by the density No. For the fiactuating
target, the echo fluctuatIons are an additional cause of error. As we shall se shortly. these
fluctuations place a limit an the measurement accuracy eve when ad~ditive received nelis' is zero.
Such contrlhutioums to the rnodoms variation of the estimatee will he designated as mself-udsef as



before, according, to the convention employed. here that any random variations in the output that
-~f.-fljfl after N0a goes to zero are to be so designated.

To estimate tie range Tr', it appears plausible to proceed as with the point nonfluctuating
target, nam~ely, tcý build a parallel set. of signal-to-noise ratio-maximizing processors that are
s~paced in delay anA to pick as the estimate -r'* the delay of the processor exhibiting the largest
outtput. Since the larget is -fluctuating, the processors will now be weightca. raO.Icmeters rather

tisi- the miat iched -f: lt er-envelope -detector deviees implied by Eq. (49). The i'-spacing br'tweer,
z:Jacent pro&:essors will be a convenient fraction of the rms range error. For small input SIN,I c~rcd large oiiiput S/IN, R. Price6  has f,)urd the error variance to be

f f 0'(0, f) a(f + fl) a'(f) df df'

Var (i-r'4) tSN 1 _ (52)

srlsere ~ble; the ambiguity function of the transmission, as before, and the output signal-to-noise
Atio (S/N) 0 is. given by Eq. (3 4 0t

The estimation a! the function ajf) is, of course, just the problem of spectral analysis; I.e.,
C.-ven a sardple segmtnt of a random process of unknown spectral density, one io to estimate the
sp ,vt: Al N~ -sity, which in our context is S(f) = r(f) + N , where N is the noise density. Although0 0
there :t ai sizable 1iteratt:..-- ov t sub.ect of spectral analys la (e.g., Refs. 6S and 66), as matters
nowIV S!,Hn thlere in no well-foyTrnlated 'rocedure leading to minimum -variance estimates of the
ripec~t-un :9(f). HowevE-), various r!ecipes for estimation have been analyzed in detail and it is
cftrfn ponsible to give a pproiinmate expressions for the error variance.

raipose we have aL sample of received signal T seconds long on which we desire to perform
v sjiec9 ral. anatlysis. Sich a sample s-u ight be obtained from a radar experiment in which the trans-

mission. br a4,inusoi~i cx: ju-,ation T.X (f one either performs a Fourier series aknalysis of the sam-

ple or 17auriiý--transfoinmb the autococ relation of the sample (these arc- the two obvious ways of
pro':epdirig), th.e reisultlng estimnated ipectrum will have violent variations every I/T cps, no mat-
t,1r -.vbWs ; ti'rue spectrumt of thn ran iom process from which the sample came. Clearly, if one
In~lnt.e un, a frequency rcsoobtioii If hiat is as small as i/T, then thin jagged picture is the only
estimate pos oible, but is rneaniir, .esa. In practice, the desired frequency resolution df must be
made larger than lIT so that a ramtber of different samples (or "degrees of freedom" as we shall

call thb us) w ill contribute to each pa nt on the estimated spectrum.
13l'4":kman waid Tukey 65suggest *he following procedure which tends to give good estimates

of -ssmwoohed vaines of the true spectral densities. 11 t~e autocorrelation of the sample is comn-
putC(I, (!) this even function (P(T) is then multiplied by some suitably chosen even weighting func-
tion D~r window function D(T) which has a maximum at zero and is zero outside the interval

(-t/6M, Of) %here 8f represents tnre desired frequency resolution of the estimate, and finally
(3) the product V('r) D(T' ii; Fouriet -transformed to get the spectral estimate S* (f). This is
equiva1kv.it to crrsvolving the transfr rm of D(T) with the transform of the specimen correlation

IThitz ixpression is valid only for targets leaving a nonzero doppler spread; It does not reduce to Eq. (50) as doppler
width goas to zero.
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function cp(T). The proper choice of D(T) is a compromise between effectively throwing away

some of the data by suppressing the extremities of (p") and retaining the violent variations of
estimat-ed spectrum with frequency. For gaussian processes, Blackman and Tukey give the fol-
lowing expression for error variance of the spectrum at a given frequency when the true S(f)

varies slowly with frequency (relative to I/T):

Var [S* (f) (53)

The average of the estimate S* (f) is essentially the true So(f). Much the samtn •-.,t will be ob-

tained if the spectral estimate is performed by making a Fourier analysis of the sample and then
adding together the powers in the T 8f frequency increments contained in cf cps.

Equation (53) places in evidence the well-known rule of thumb that the ratio of variance to
squared mean is inversely proportional to the number of independent samples or degrees of free-
dom (roughly 2T.f for a spectral interval af wide observed for T seconds),i Thus, if one is

measuring S(f) of a radar astronomy target he must try to make the total observation time T

several times longer than the reciprocal of 8f the desired frequency resolution, as as to increase

the number of degrees of freedom contributing.

For our radar astronomy purposes the usual recipe for spectral analysis (of which we have
just presented one that has been elaborately studied for practical applicability) suffers from the
defect that it provides an estimate of Sff) = a(f) + N and not a(f) itself. Without careful calibra-

tion it may be difficult to know just what baseline level to subtract out of the resulting plot S* (f)
in order to isolate the echo component a(f).

The problem of estimating the frequency shift fd of a spectrum of known shape S(f) from i%
sample of durrntion T of a random gaussian function of true spectral density S(f - fd) has been

treated by Swerling67 and Levin.68 Swerling has suggested a procedure in which •, • es-
timate S* Mf) obtained by the Blackman-Tukey method just described is operated on by a fraqazn

weighting factor a (f) so that the estimate f* is given by fS*(f) a(f) df. The functior (') is chosen
from prior knowledge of the S(f) shape to minimize the error variance of f* in termb oat errord
variances of S* (f). Since the latter quantity S* (f) is obtained to begin with by a more or less

ad hoc procedure, as we have seen, the use of S* to get f* is not guaranteed to produce minimum-
varlance estimates of f

68 d
Levin sought to find a maximum-likelihood estimator of fd directly and has examined the

Cramer-Rao lower bound nn error variance. He finds that

alf (54)
Var (f*)~ >1r T~~ a'f dfj ~(4d (a(f) + No

where a'(f) is the derivative of a with resprem te frequency. Note that rapid variations of a(f)

with f tend to make estimates of frequency shift more reliable, as one would expect. The
maximum-likelihood estimator of fd is that which picks that value of fd for which

vba +

n S( n n

t The factor 2 occurs because at each froquency the signal is characterized by two quantities, e.g., an amplitude
and a phase.
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Is a miiuwhere an and bnare the Fourier sine and cosine coefficients at a Yonmitr Oprise
expansion at the sample function, In other words, one processes the received smeaple to San-
erate a jagged function representing the power in the successive Fourier components oald tha

- -conva)oss;w thi with the reciprocal of the known shape 8(f x No + o'(f) to find the Shift fd far whc
a minimum output is observed. As the product at observation time, T and B at 3(1) becomes
large, thi maulmun-likelihood estimate is a minimum-variance estimate and Eq. (54) converges
to the equality condition.

The frequency width at a spectrum can he estimated by a related procedure also worked out
by Levin." (Recall that oae method at determining the rotation vector at a planet is to measure
the width at the echo power spectrum at various times during the synodic period.) Let the true
spectral oshap he SMh(f - fd) I -ufh(f - fd) I + No, where fd is the center frequency and h Is a scalea
factor on width. If only h Is unknown and is to he estimated. Levin finds that the, Cramer-Rao
lower hutis

[a h* l) IT ,(f(f.ffd) j Idt (56)

wihis very similar to Eq. (54). Note again that rapid variations of target bheavior v with fre-
-yr. W Jasilitate measurement of the width factor h; also that the quadratic factor mean that

snob varkdeas at frequencies distant Fru1 the baud ctrare -r helpfu than 11he near the
cene. The nmdswum-likellhood ee~thodr of h picks tha value of b far which

a 2 I2  aT +bNo

is a minimum, K being a certain constant. In other wards, one processes the received sample
to generate the power in the successive Fourier components (far exiamle by using a narrow-bond
filter), and then computes the convolution for fixed shift of this Jagged funstian With the reciprocal
of the profile ufhV - fd choosing varic.. values ot h until She oaeho.llten is mdinimise. APAMn
the hound (Eq. (56)) applies with the equality sign when WT in large.

The othear form of target spread in one doainai only is the deep nooluetalftea target whose
scattering function is a(v. f) x (r) 8(1 -Vf). Al h ctcsJa rsne hn rosof esti-
mating TI., W(f), fd and h apply through a certain duaiLty retatieaship to the eatimation at r.
alt), rd, eftc. for the deep nonfluctuating target. Instead of dealling with a sample function T
seconds long. obtianed perhaps by illuminating the target with a sine wave, the target is effec-
tively Illuminated with a single impulse and phase and amplitude of the echo components at vari-
ous frequencies are measured over a bandwidth W. Instead of having a narrow-band received
signal exhibiting fluctuations at amplitude and phase evry t/B seconds In time throughout T, we
have fluctuations of amplitude and phase every i/Lops, throughout W.. In situations where
previously we dealt with a Fourier series analysis of a time function T seconds long we deal with

time samples of the echo waveform every .12W seconds. The detailed application of this duality
to get answers for the deep notfiluosuatiag target will not be pursued any further here. Ihis duality

69has been developed in detail by Bello.
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D. eep Do" ,udift Targets

As the reader will see from c'imparlng the material In the previous two sections the appll-

cation c statistical estimation theory to the classical nonfluctuating point target is rather com-

plete, but our present understanding of the mere complicated singly spread target, altheqh

filling out rapidly. Is still somewhat fragmentary. For the doubly sprad or deep fluctuating

target the situation is even worse. Only a few miscellaneous results are available.
In practice one night want to estimate the following attributes of the true scattering fune-

tion v(v. f): (1) the center frequency and/or center delay, given the exact shape at a(r, f); (2) the
frequency width and/or delay width, given all other intormation on oa(v. f); (3) the function (r(, f)
itself, given no a priori data about it. Or these, only the first and last have received much

attention.

The simplest method of measuring u(r, f) is the rather direct one that was discussed in

Table L. the use of a simple matched filter or correlation detector with preset r and f offsets
to probe the scattering function at the point r, f. This is the method employed in Pottesfll's

moon-mapping workPs' 9 Suppose we desireto do such an experiment and achieve a frquemey reso-
lution of Of and a delay resolution &i that is, we wish to measure the aveage ecwh poer I& a
cell of the r - f plane having the dimensions £f and Or. If we make the slinl bandwidth s/Or and

the durations V/a. then we,&* in the output apseed'envelope Just suech an obse~rvetm of toe ft-
sired cell (•qs. (31) and (32)L but the number of dogrees of freedom of the observation is only two
and Uh variance eqmals the mean. as with the simpler spectral aalysis cee described 1
Eq. (53). It, hIte , a banwidth m/ST and/or a duration n/St is used (m and n • tVa , th -
separate received squared envelopes are added together and the square root takew, then the um-

ahr of degrees at frem is 2 mn and the variance of estimation at Or, t) is

Varjv*(rf)j= A!!Jwi!L!U (58)

as with Eq. (53).

One defect of this simple procedure is Its behavior when the target approaches the ora..

spread condition, that is. when the product of total doppler spread B and total multipath spread

L Is near unity. As we have seen earlier, the operation at such a matched filter or correlation

detection method can be visualized as overlaying onto the surface 4Y(T, f) the surface #Za(, ,n mlt
appropriate delay and frequency offsets)'and then adding up all the volume under the product

Sfunction. As long as the ambiguity function # has most of its volume in the central peak. very

little output power comes from say place but in or very near the desired cell In the 7, f plane.

no matter how large the area BL covered by the function a. However, as the invariance relation

Eq. (30) assures us, such a concentration ct the volume in # will occur only when the base of the

central peak has an area of appromimately unity, as with the waveforms of Figs. I0(a). (b) and (c).
But suppose it is necessary to use one of the large-TW waveforms of Figs. t0(d) and (e). This

would be the procedure if it is deseied to resolve a cell in the T, f plane of size Or Of = I/TW << t.

Because of the secondary peaks of Fig. 10(d) or the low-lying skirts of Fig. 10(e), If the area BL

covered by the scattering function is great enough, then the processor output power due to the

desired region of the r, f plane (the region of the central peak of # Z) will have added to it mal&-
nlgig power from undesired regions. (Once again we use the term self-noise to designate output

components that do not go to zero even If the additive input noise does.) Clearly, whether such

components will appear in the output depends on the scattering function area BEL and on the type

of ambiguity function chosen to probe It.
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Let us illustrate these ideas by picking some numbers from A specific radar astronomy ex-

periment. Suppose we wish to make a radar map of Mars using a pulse train [Fig. t0(d)]. The

multipeth depth L from nose to limb is 24 msec, which means that observations of the received

signal made more frequently than once every 24 msec win be noisy due to time overlap of the

echoes. The echo power near the limb is so small relative to that from the nose, that a periodic

sampling ot the echo from the nose would not be significantly corrupted with echoes from the limb

until the sampling interval became much less than 24 msec, but the converse would not be true;

samples of the echo from near the limb would be badly corrupted by strong self-noise from the

nose as soon as the sampling period was reduced below Z4msec. Now the carrier frequency

above which the total doppler spread of Mars is t/24keps turn. ou to be 26.5 AMco. In order to

compute a clean echo spectrum 1/Z4 kcps wide, the ability to get a clean sample onae every

24 msee must be preserved, and we see that this condition begin to be violated at a carrier fre-

quency of 25.5 Mcps; i.e., this is the lowest frequency for which BL,= t, if by 8 we mean the

total limb-to-limb doppler spread and by L we mean the total multipath duration. (The fre-

quencies for which BL (so defined) equals unity are given in Table l ifr other radar astronomy

targets.J

Now suppose we are operating at 440Mope so that DL isveqy W04 actually i8. B being

750 cps. If we do not need more than about iS cells in our radar map, we can send a simple

TW = I pulse (Figs. I0(a) asd {b)J of duration, say, 6 msec, and by everalgag the received power

"at the desired receiver r- and f-offsets get an observation of echo power In a cell at the v-f

plane that i. Or - 6msec by 6f - t/6kcps in area.

We conclude that when BL is much smaller than unity., a lare-TW sgl oa be olugen sucb

that the sel-noise ic negligible. For example, in Fig. 10(d), so long as the scattering funotion

does not spread outside the area enclosed by the dotted lines. s-ofo-nse dd to mosetral peaks

TASML II

CA1 F=UgWNCESW MOEWIDH VARMO TAMMT AM OVSAR
L PTaduct IW an Aibtwy Fr neqey F is

Moon (at nkusi m h NlsO lo w f- 3150

Mwecury (amuing 0S-do 7 isatoio perWd 4280

Venue (MIhng 225-day lao ped) I

lord 39.7

Mm's 26.5

Jupter 1.58

Saturn 0.380

Lam 2.06

Nepoune 3.77
Pluto (suulng 16-or m•ete perio4 2.25
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will be negligible. We further conclude that when BL is much greater than unity, if one can be
satisfied with a resolution cell of size Or 8f a t, then a TW = I pulse fFig. 10(a), (b) or (c)J can

be used, and because of the central concentration of the volume in the ambiguity function, once

again the self-noise will be negligible. It is the in-between values of BL of the order of unity
that produce self-noise difficulties.t For illustration, we have plotted in Fig. 15 several curves

IT U ASAU0I0 TAT ONE 3 TRYINS TO CSKAsE

Im. a" Ats THIEum er or•i

I olmoznm",nm •. GVVOV AD / •

L9

'* ... Fig. 15. The manner in which self-noin corrupt Ihe estimate of *ih scatteringfuncto when Ame Mier proceduem h us d nd ** W h modr

the waveefo t in use is the dale m he se eduit uned midethe edatghlright of

Fig. I 0(e).
Tf s te-t giquen r a method of measuring the tccttering function also bncounters difficultieg

as the target beomnes overspread, as is quite easily visualized. By referring to the fourth

entry of Table I we are reminded that one first obtains A (Af, Ar) by cross-correlating the outputs

tWe may CeNJecMuS *At It is IpasOmle #0 realize a IhyiOal wovefaSm w1ew ambigulty funtimon has lS then
a cartel. aount of volume in n ares much larger Ohen the order of unity surrounding the central peak. The
volume my occur in th central peak, = In Fig. 10(a), (b) or (c); In separate peaks, a In Fig. 10(d), or in wide
faosllls as In s(e). (Such an ore with a low noncentrel volume is te dotted regin of Fig. 10(d).] This eon-
lecture remohis unproved t dote.
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of two filters tuned to separael receive two sinusoids transmitted Af &part, and then Fourier-
transforms A (Al, &v) to get a(-, f). Now A varies with Af at roughly a rate i/L; that is, we
will want to measure Bt for frequency spacings Af as low as i/L cps. But each sinusoid io
smeared by B op.. so a clean (self-noleeless) signal separation will be possible only if B > t/L.
i.e.. if the target iN underspread.

There Is a class at methods at measuring the scattering function a(vr, f) that appears to be
devoid at the problem of self-noise due to overspreading, and has other advantages over the
matched filter (or correlator) method we have described. even though the latter is easier to im-
plement. These methods are the fourth moment method! 0,7 ' the IVN.Maximisation meth~od1 2Z
and the least-squires method.?3 Each requires elaborate receiving eupipment and/or computer
processing. These three approaches are worth takn a bit of space to describe here, because,
although their advantages and usability. are not completely understood at present. they are being
actively investipated and are not p4 hn methods (as is the matched filter approach) but have op-.
timum propertie, as we shall now explain.

The fourth moment method proposed by Kailath involves a receiver which processes the re-
ceived signl w(t) so as to compute *be quantity

<w(t) w(t+ ) 41 - 0)Mt + a- P)>

in which the trsmemlssion zit) is a white noise. As before, ( > represnts the infnite time
avrae. atift from such a imeasurement of this fourth moment, we can then calculate the

estimated scattering fuiction we(v, f).
Lerto'Islast-squaree method is a more general procedure at which the fourth moment methed

is the special case for very long lisiration time and for zft) a white noise. Ja the least...quares;
pr ocedure go preosesoess the 1400d~h sample wMt to get the same fourth moment (emoePt tat
the integration time Is now finite). This fourth moment is then opeusted on by an gapiloit linear
transformation involving the knowm transmission z(t) and the resulit is a quantity which, when
Fourier-tragaftumed once, is Soe desired w* (r., f).

Prtce's 4I3 method consists: of building a rake radiometer "u. tt(d)J with
adjustable filer ahemteristios IHNgOI at each top. These - are them afluased by
some trisl-aýrorre until the trW al W ~at lgl-to-nois ratio Isin asatisied. Be-
ca~iin that the I3I~OOI Is that minimaise signal-to-noise roftt are a repred"Ustn of the ealering
function .4,, t) (Uq. (35) 1. we boe" thes orsted emist **N*eOfr. f) Im the "Ies" settiup of the
filters. Price shows that at law Aepnd W bl-e nois setlka this method produses a ssxmum-
likelihood 'eat t. Levin baashw that the leask-e.uree and W/K-snazmissiatio methods ame
equivalent, and therefore that at low input sulwml-to-nolse ratios they are both mauimum-
likelihood eUstiater.

It Itun emot 6b. at Al shisal-Wo-slle no iles ismoimew Is eqmvewle to permmifsg a lesst-squsras fit be-

eleauso if of 9 we e~dused to mlInksise

S involves bohoOk1w Wwou &Wd Obte irensmoda x4* ed Ohe edjusimle trial thap aseetteIng fwwstln.
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A fp resent, not much is known about the variance of estimates obtained by these methods.

It seer 's plausible that some specification of the Intended degree of range resolution 81 and dcp-

pler regcl'tion 6f must be made, and that then the variance of the estimates will go down as

"r Mf "W the number of degrees of freedom per resolution cell, goes up (T being the sample

duratin and W being its bandwidth).

Prioe,"64 has investigated the problem of estimating 70, the center range of a deep fluctuating

target *hase scattering function is known apart from this range parameter. The result is a more

general oise of that given in Eq. (52), and amounts to the following. The estimator is an array

of rake rsdiometers set for various delays. The estimate 7- is that corresponding to the proc-

mssor exhibiting the largest output. Under the conditions of low input and high output signal-to-

noise ratios, and assuming that the output in the absence of noise is parabolic in the neighborhood

of the trat. -to, Price finde that

ffff 2(ff 0(7' - 7, f' + f) ,(T', f) dr, dfd7'df'

Var (,*) = (SN)•'i . (59)
0fdf (Tf f# 1OA ' -- 7, ft + f) •(v' - ?,, f') dydfdf' df'

VY. SUMARY AND COKCLUOMS

In this report the author has attempted to summarize the techniques by which various astro-

nessieaUy Interesting properties of remote objects may be studied by proceming of received ra-

dar signals. In the case of soft" targsts such as ionized regions, clouds of small particle.

sad so fortl, little that is mftamilisr was said here; conventional sounding techniques are avail-

able for estimating electron density and magnetic field.

Hard targets are quite interesting from the signal processing viewpoint, since by the choice

of su:rtablo transmitted signals nd receiver operations a number of target properties may be do-

term:ined. Che of the meet important of these is the statistical character of the rough target

surfs ce. In this report a number of procedures were discussed for determining the radar angu-

lar power spectrum o(•) of either a portion of the target or the whole surface (the latter under

the aseumption of statistical uniformity of the surface). The function %o express directly the

secood-order statistics of the random spatial irregularities in the echo wavefront, and it ex-

-;.-es soe indirectly the second-order statistics of the target terrain itself. The relation between

stati. Aict properties oa wavetront and terrain was not dealt with here.

measure•uent of %4(0} of uniform objects can be made by short-pulse, long-pulse, spaced-

freqternty or i~terferometer experiments; also, the roughness can be inferred grossly from

polarimetry measurements. This last type of procedure requires at this writing much further

theoretical wo:rk before one can say just how the mount of signal depolarisation depends on sur-

face roughness: (suitably defined).
"Tor nonuniform objects one is interested in determining vo (o) for various regions. Isolation

of various target regions in antenna beamwidth is usually out of the question because of the great

tsrgqtt ranges; also, it was found to be impossible to perform the isolation on the basis of differ-

ent raotions of the corresponding parts of the diffraction pattern observed at the earth. However,

resolution of trget regions can be effected by using large time-bandwidth signals such as pulse
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trains or pseudonoise signals to isolate echo power returning at various points in a hypothetical
range-vs-doppler plane (that is, to estimate the "scattering function" of the target). Moreover,

there is a simple distortionless geometrical mapping between points on the target ai;d points in

this plane.
There are a number of unanswered questions about processing techniques for isolation of

target regions. For example, the way in which one might apply in practice certain measurement

procedures that are known to be statistically optimum is unclear. It is unclear to what extent

one can avoid the added noise injected into the receiver output when examining an overspread
target. The added complexities of processing and the added possibilities for sensitive mapping
experiments using range-doppler trajectories have not been adequately studied.

The measurement of target rotation speed and axial orientation was discussed and various
fairly straightforward methods were outlined for partially determining these quantities by proc-
essing of single station or interferometer echo signals.

The radar measurement of several other target attributes (e.g., target shape) was discussed

briefly.

Explicit procedures for actually carrying out the observations were dealt with in Sec. IV-F,

and particularly in Table I.
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APPENDIX A

A DISCUSSION OF CORRELATION FUNCTIONS AND ANGULAR SPECTRA

OF INTEREST IN RADAR ASTRONOMY

by

Martin Balser

Consider, for simplicity, the one-dimensional problem of a component of the field C(x, 0)

given on the plane z = 0 as a function of the coordinate x along the plane. Here, x and z are

distances expressed in multiples of a wavelength. We assume 8 and 6-2 are integrable; i.e.,

the field is essentially limited to a given region or aperture in the plane. Thus F has a Fourier

transform, given by

W,1) = f(x, 0) exp[-jZwlx] dx (A-i)

and, inversely,

e(X,0) = WV() exp[j2wfx] d! (A-Z)

It is easy to see that

F(X, Z) 7 "jj (1) expfj2w(Ix + nz)] ds (A-3)

where n = J - ,7 is a solution to Maxwell's equations, being a superposition of plane waves,

the one of amplitude 341) di traveling in the direction 0, where I = sin 0 and n = cos 0. The well-

known result that structure in the aperture field which is finer than the wavelength does not prop-

agate is seen formally in the observation that such structure corresponds in Eq. (A-Z) to values

of III> 1, which results in Eq. (A-3) in imaginary values for n and hence in damped waves.
It can further be shown4 that at great distances (compared to the size of the aperture) from

the source plane, the field in Eq. (A-3) becomes e(x, z) ~ W!), where I = z/ 1 x2 + z2 ; i.e.,

[W'(1) 12 is the angular spectrum, indicating the power radiated in the direction 0 = sin-' I .

(The aperture distribution is assumed to be in the vicinity of the origin.) Also, the correlation

in the angular pattern

S.? p) Wp/*(p + I) dp = f-Ix, 0) F*(x', 0) exp[f-j2wpx + jZir(p + 1) x'] dx dx' dp

= 2f. 5 E(x, 0) 12 exp[j2irlx] dx , (A-4)

i.e., the Fourier transform of the aperture power distribution or illumination. Since the values

of I can be immediately related to distances x along the observation plane z = z (denoted z0 in

Fig. 2 of the text), this theorem relates a "distance correlation" to the aperture brightness.
A somewhat different concept of distance correlation along the observation plane is, how-

ever, usually considered in practical situations. First of all, the measurement is taken quite

locally, not, as in Eq. (A-4), through all values of I (or x in the observation plane). Second,
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the averaging (for most practical cases, in time) used to determine the correlation implies a
statistical process, whereas the previously cited results are precisely correct for any individual
distribution e(x, 0). Accordingly it may be asked whether the same, or a similar, result exists
for a correlation function more nearly related to this practical concept. To see whether this is
so,t consider the aperture field distribution to be a sample drawn from an ensemble of the form

((x, 0) = S(x) C(x) , (A-5)
where 3(x) is a stationary random process in x, and S(x) is a fixed envelope which determines
the power distribution in the aperture plane (I S(x) 12 is the brightness distribution). The random
function is assumed to have the ensemble averages (expected values) (3C(x)> = 0, <3C(x)> = 1,
(C(x) 3C* (x + t)> - p(•). If now we form the product

"W'(p)W * (p + () = (x, 0) C*(x', 0) exp [-jzrpx + j..r(p + 1) x1] dx dx'

-o

SSx) S*(x') XC(x) X*(x') exp[-j2rp(x-x')] exp[ j2rixJ dx dx' (A-6)

and take the ensemble average, we find

(jp) W* (p + - S(x) S*(x') p(x- x') exp[--jZrp(x-x')j exp[ j21rix] dx dx' (A-7)

It is reasonable to assume that the over-all aperture power distribution I S(x) I Z chaa•a very
little over a correlation distance (i.e., the range of non-negligible values of p), so that in Eq. (A-7)
we can replace S(x') S*(x) = iS(x) 1 2. Changing the variable x' - x = u, we find

(W(p) WK*(p + 1)0 = p(u) exp[jZrpu] du IS(x)12 exp[j2irlx] dx (A-8)

An incidental result of Eq. (A-8) is found by setting I = 0; then

K= K 3 p(u) exp[jZwpu] du , (A-9)

(where K = f S(x) 12 dx), which states that the angular spectrum radiated from the aperture
is the Fourier transform of the correlation function of the field in the aperture. (This was also
shown by Bramley 74 ). The principal result is, however, the other integral, i.e.,

< W(p) W* (p + I)> = <IW'p) 1 2> IS(x) 12 exp[j2lx] dx (A-10)

This result is very similar to the one in Eq. (A-4) in that it relates the angular (or distance) cor-
relation to the Fourier transform of the aperture illumination, but in Eq. (A-10) the statement is
made for each value of direction cosine p separately, rather than integrated over all values of p.

t1This is essentially the approach used by Ratcliffe (Ref. 2, p. 223).
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For different values of p, the angular correlation function has the same form and differs only by

the consta.nt -f proportionality, the angular spectrum.

At this point the effect of the assumption that S(x) S* (x') I S(x) j 2 can be seen. [It was this

assumption that allowed the separation into a product of the double integral in Eq. (A-7).] To ne-

gate this assumption, i.e., to state that the correlation distance of the aperture field is compa-

rable :.o the total size of the aperture, would mean that th.e angular correlp.ton distance is com-

parable to the width of the angular spectrum. Thus [from Eq. (A-10)], the received power level

in the observation plane would change over distances comparable to the space correlation distance,

destroying the normal assumption of "local stationarity" used in measuring correlation functions.

Note that all the previous analysis has based the angular coordinate system at the origin, lo-

cated at the aperture. Actually, by defining a new set of angles from the point of observation as

origin, it can be seen that Eq. (A-10) is the same as Eq. (A-9), which states that at a given plane

the angular spectrum and space correlation function are a Fourier transform pair. It has already

been mentioned that the ground pattern C(x, z) at the observation plane is simple related toW/(s),

the angular spectrum based at the aperture. Thus the left side of Eq. (A-t0) is essentially the

space correlation function at the observation plane. Also, it is easily seen that the (received) an-

gular spectrum is proportional to the illumination distribution in the aperture (clearly, the radi-

ation is limited to the angle subtended at the receiver by the source). This duality between angle

at one terminal and distance along the plane at the other terminal thus allows the inference of ei-

ther Eq. (A-9) or Eq. (A-t0) from the other.

It might also be mentioned, finally, that most experimental measurements consist of time,

rather than ensemble, averages. This is essentially an assumptico of ergodicity, or an assump-

tion that the fields being observed are being replaced in time by other members of the ensemble,

so that the one average is equivalent to the other. We can thus regard the abbreviation < > used

in this Appendix as representing a time average.
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APPENDIX B
SCATTERING FUNCTION FOR UNIFORM ROUGH SPHERE6

The problem treated here is the determination of the distribution in range and doppler of

the radar return from a uniform rough rotating sphere. This quantity (defined as a) will depend

on the diameter of the body, its rotation velocity, axial tilt relative to the line of sight, and the

7carrier frequency in use. It will also be a function of the radar reflecting characterisutc ao(0

(to be defined) of the material of which the surface is comr.osed, and we will be interested in see-

ing the relationship between the radar return and this quantity a describing the surface properties.

We define

a = tilt of axis from perpendicularity with line of sight,

= rotation velocity in radians per second,

fo = carrier frequency,

ao(q) = reflecting cross section per unit area of surface as a function of tilt

of the radar line of sight from normal (radar angular power spectrum.)

We seek to find the expression showing how these quantities affect the scattering function

a(T, f) = time average radar energy returned in a hypcthetical element of time
delay (range) dr wide at delay r and df wide at doppl(.r frequency f.

We shall assume that the position of the center of the sphere corresponds to the T-origin and that
the velocity of the center of the sphere (assumed in straight-line motion) corresponds to the f-origin.

Figure B-i depicts the rotating body cut by a plane Q containing both line of sight and axis.

An arbitrary point P on the surface is shown having coordinates (e, Y). Also shown ib the angle 9

between line of sight and radius vector from the center of the sphere to the point P.

The first step is to find the projection on the line of sight of V, the velocity of P. First,

magnitude of V, V = 1 a sin E (B-i)

The projection of V on the plane Q is

0 a sine siny ; (B-Z)

the projection of this quantity in turn along the line of sight is

Sa sin 0 siny cosa , (B-3)

and the doppler frequency offset of the echo from P is

Zf
f = C f a sine sinv cos a (B-4)c

But the perpendicular distance x from point P to plane Q is

x = a sin Y sine , (B-5)

so

2f
f =-- 00x cosa (-a-< x<a) (B-6)c

The range (delay) of point P is clearly given by

Za
S=-- COS=- (B-7)
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SFig. B-1. A rotating body cut by a plano Q
LINE OF 81111 -HT containing both line of sight and axis.
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Fig. B-2. Head-on view of an annular range strip
and a straight doppler strip on the target. /-LOCUS OF POINTS HAVING
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Fig. B-3. Plan view of plane containing line of sight and radius
S-Ay from target center to one of the shaded regions in Fig. B-2.
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where for p.:esent purposes r' reads in a positive direction toward the observer.

Now we have defined ao(p) to be the cross section per unit area of target surface (not per

unit area of incident wavefront); P is as shown in the figure. If we assume unit power flux den-

sity throughout the incident wavefront, the total power returned with delay 7 and doppler f in

a range of delay dT and doppler df is

a,(7 f) = (number of square meters of wavefront corresponding to the
element dfdT) X (cross section per unit area of wavefront). (B-8)

The second factor is ao(qp)/cos 47.

Call the first factor A. Figure B-2 shows a head-on view of the target (looking along the

line of sight with the line corresponding to plane Q in the up-down direction). The two regions

making up area A are shown shaded. The width Ax (in meters) of the strip containing all the

energy lying in unit bandwidth at frequency f is [from Eq. (B-6)]

Ax = c/(Zfo cosa) . (B-9)

The width of the annular strip containing all the energy lying in unit spread of delays at delay r'

we will call Ay. From Fig. B-3,

Ay = cos 4P (B-10)

The area A is given by

A = ZAx~y/cos 6 , (B-1l)

where 6 is indicated in Fig. B-2, and

sin6= / - (B-1)ZfOflCosaf

Combining (B-12) with (B-1i) and (B-7) with (B-10) and then substituting (B-9), (B-10) and (B-li)

in (B-8) we have finallyIW c f) 2cos a(cr'/a) -

c- cos(I-(cT'/Za)
2 - (fc/2f a 0 cos a) for real values

0 for imaginary values (B-i3)

From Eqs. (37) and (39), respectively, power as a function of delay only is

OrT) = W ac %o(Cos'I(c7'/Za)) (B-14)

and power as a function of doppler offset alone is

= (B-13) df (B-15)
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